MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

how to design a photo catalog

Daniel Jackson

a problem

* conceptual design of a photo organizer

a new paradigm

* computation over relational structures

* today, the abstract design level: object modelling

* determines, in particular, model part of MVC (see last lecture)

object modelling
* snapshot semantics
* basic notation: domain/range, multiplicity, classification

* some classic patterns

© Daniel Jackson 2008 2

the problem

Screenshot of Adobe Photoshop Lightroom removed due to copyright restrictions.
In the Library view, you can select images to add or remove.
The left-hand sidebar includes Collections that you can define.

design a photo cataloguing application
* Lightroom, iView MediaPro, iPhoto, Aperture, Picasa, etc

© Daniel Jackson 2008 4

what kind of problem is this?

mostly about conceptual design

* what are the key concepts?
* how are they related to one another?
* what kinds of structures?

good conceptual design leads to
* straightforward path to implementation
* simplicity and flexibility in final product

© Daniel Jackson 2008 5

why not use datatype productions?
* tree-like structures only: no sharing

* immutable types only

why not state machines?
* our catalog is a state machine

* but the problem lies in the structure of the state

* our state machine notation assumed simple states

a new approach: object models
* structure is a labelled graph

* put another way: sets of objects + relations

© Daniel Jackson 2008 6

computation is about
* actions, states, transitions
* functions, expressions, values

* and now: updates and queries on relations

why is this useful?

* conceptual modeling

' relational databases

* object-oriented programming*

* semantic web, document object models, etc
*for proposals to make relations explicit in object-oriented programming, see

this survey: James Noble, Roles and Relationships, ECOOP 2007 Workshop on

Roles and Relationships in Object-Oriented Programming, Multiagent Systems,
and Ontologies; http://iv.tu-berlin.de/TechnBerichte/2007/2007-09.pdf

basic OM notation

snapshots

a snapshot or object diagram

a relationship:

* shows a single instance of a structure
CO is subcollection of C1

example for photo organizer o ——— °
* in this case, two sets

Photo (shown in beige)

Collection (in grey)

a relationship:
* and two relations PO in cdbcmfcz
photos: Collection -> Photo

subs: Collection -> Collection

© Daniel Jackson 2008

more snapshots

how can we summarize this infinite set?

© Daniel Jackson 2008 10

an object model

each box

* denotes a (maybe empty) set of objects

each arc

* denotes a relation, ie. set of links between objects

note
* objects have no internal structure!

» all structure is in the relations

exercise
* draw a snapshot that the OM rules out

© Daniel Jackson 2008 11

Collection

subs

photos

Photo

enriching the notation

what's wrong with these snapshots?

* how would we rule them out?

key idea: multiplicity
* measure the in-degree and out-degree of each relation

subs /subs

© Daniel Jackson 2008 12

multiplicity

multiplicity markings
* on ends of relation arc

* show relative counts

interpretation

* R maps m A’s to each B

* R maps each A to n B's

marking/meaning

+ one or more

* zero or more

' exactly one

? atmostone

omitted marking equivalent to *

© Daniel Jackson 2008 13

kinds of function

standard kinds of function

* easily expressed with multiplicities

© Daniel Jackson 2008

R is a function

R is a total function

R is an injection

R is a surjection

R is a bijection

14

multiplicity example

we've added naming

* always an important and subtle issue

* is the multiplicity constraint desirable? necessary?

subs
| ? 2
Coltllsﬁ;t;on —~_ name __| Collection
photos
Photo

© Daniel Jackson 2008 15

classifying objects

suppose we to classify photos

* by file location: online, offline, missing

* by selection: selected, focus

Photo

Online

Offline

Missing

© Daniel Jackson 2008

Photo

i

Selected

/\

oval means

singleton set

classification syntax

can build a taxonomy of objects
* introduce subsets

* indicate which are disjoint
* and which exhaust the superset

A A abs;ract

T 1 1
| |

B B C B

B C BNC=0 BUC=A

© Daniel Jackson 2008 17

relations on subsets

when placing a relation
* can place on subset

* loose multiplicity is a hint

Photo | path .| Filepath

T

Online Offline Missing
vol since
¢ ! !
Volume Date

© Daniel Jackson 2008 18

a classic pattern
* hierarchical containment

> file systems, org charts, network domains, etc

you've seen this with datatypes

Collection

1

* technical differences though

Folio

* OM allows cycles (but often rule out)

* OM can say just one root photos

Photo

© Daniel Jackson 2008 19

subs

Folder

hotel locking

example: hotel locking

modelling physical, distributed state

state in OM need not represent
* a centralized store

* data stored in a computer

© Daniel Jackson 2008 21

hotel locking

recodable locks (since 1980)
* new guest gets a different key
* lock is ‘recoded’ to new key
* last guest can no longer enter

how does it work?
* locks are standalone, not wired

a recodable locking scheme

card has two keys
if first matches lock,
recode with second

if second matches,
just open

)

()

draw an object model
* showing the essential state of hotel locking

* state includes front desk, locks, keys held by guests

review

* did you exploit multiplicities? keys are all about uniqueness

* did you include only the sets and relations that are needed?

* are your sets really sets, or are some of them ‘singleton placeholders'?
* do all your sets and relations have a clear interpretation?

* where are the various parts of the state stored physically?

* which relations are modifiable?

Guest | occupies _-
holds

!
Card . fst,snd -

some subtleties

Room

key

Key

Issued

g->r in occupies: guest g has checked in
for room r but has not yet checked out

k in Issued: key k has already been
issued by front desk on some card: used
to ensure that locks are always recoded
with fresh keys

* guest may occupy more than one room

* family members may have identical cards

Desk Card Hotel

1ssues has guests

Key

Key Key Guest Fst

be wary of top-level singleton

* Desk and Hotel not needed

relations represent state, not actions

* 50 1ssues is suspect

need enough information in state to support application

* has is not enough: need to know which key is first, second
scope of classification

* classification of keys into first and second, is by card, not global
* 50 need relation, not subsets to indicate the distinction

Snd

colour palettes

example: colour palettes

modelling the state of an application

* how colours are organized

essential idea

* elements are coloured

* can assign colour from palette
* gives consistent appearance

Screenshots of color schemes in the Keynote and PowerPoint
presentation programs removed due to copyright restrictions.

© Daniel Jackson 2008 28

palette object models

three subtly different approaches

* think what happens when palette is modified

* hard vs. soft links: as in Unix

palette
| !
Doc Palette
elements swatches
{ b
Element }7 colour | Swatch
key value
/ \
Name Colour

palette
Doc Palette
elements swatches
Element Swatch
colour key value
N/ \
Name Colour

palette
!
Doc Palette
elements swat‘ches
v v
Element Swatch
key value
/ \
Name Colour
L colour f

“Every problem in computer science can be solved by introducing another level of indirection”
-- David Wheeler

© Daniel Jackson 2008

29

completing the organizer

can collections hold photos and subcollections?

* decision: yes, so not Composite pattern

how are “all photos” in catalog represented?

» decision: introduce non-visible root collection

unique collection names?

* decision: file system style, so siblings have distinct names

do parents hold children’s photos?
* in logic: all c: Collection | c.subs.photos in c.photos ?

* decision: use two relations instead
c.inserted: the photos explicitly inserted into collection c
c.photos: the photos in collection c implicitly and explicitly
invariant relates these: c.photos = c.inserted + c.subs.photos

© Daniel Jackson 2008 31

final object model

inserted,
photos

Collection Photo | _ image _-| Image

% subs ZT
. . '| Collection
Visibl - :
isible name > T Selected

additional constraints

* all collections reachable from root (implies acyclic)
Collection in Root.*subs

* implicit photos are inserted photos plus photos in subcollections
all c: Collection | c.photos = c.inserted + c.subs.photos

* hames unique within parent
all c: Collection | no c1, c2: c.subs | c1!=c2 and cl.name = c2.name

© Daniel Jackson 2008 32

modeling hints

how to pick sets
* be as abstract as possible (thus Name, not String; SSN, not Number)
* but values to be compared must have same type (so Date, not Birthday)

* beware of singletons -- often a sign of code thinking

how to pick relations
* represent state, not actions (so atFloor: Elevator->Floor, not arrives)

* direction is semantic; doesn't constrain ‘navigation’

choosing names
* choose names that make interpretation clear

* include a glossary explaining what relations and sets mean

© Daniel Jackson 2008 34

summary

data before function

* before thinking about system function, think about data

an object model is an invariant
* meaning is set of structured states
* declared sets + subset relationships + relations between sets + multiplicities

* augment diagram with textual constraints (in Alloy, as above, or just English)

model objects are immutable
 all state kept in subsets and relations
* model objects have no ‘contents’

* important to keep coding options open

© Daniel Jackson 2008 36

