MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2008

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Concurrency

Rob Miller
Fall 2008

© Robert Miller 2008

Multiple computations running at the same time
» Concurrency is everywhere, whether we like it or not

lind

Multiple processors in a computer
(or multiple cores in a single chip)

Network

Multiple computers in a network

» Concurrency is useful, too
« Splitting up a computation into concurrent pieces is often faster
¢ Many apps must handle multiple simultaneous users (e.g. web sites)

* Even single-user applications are better with concurrency (e.g. Eclipse
compiling your Java code in the background while you're editing it)

© Robert Miller 2008

Shared Memory
» Analogy: two processors in a computer, sharing the same physical memory
Concurrent modules A and B

A B interact by reading & writing shared
state in memory

A A
| -/ \:l/ \- Shared memory

Message Passing

» Analogy: two computers in a network, communicating by network
connections

TN A and B interact by sending
A B messages to each other through
Bl a communication channel

© Robert Miller 2008

Four customers using cash machines simultaneously

» Shared memory model — each cash machine reads and writes the account
balance directly

Cash
machines A B C D
deposit $100 withdraw $100 deposit $100 get balance
to account | from account 2 to account | of account |
\V)Ej/
Bank $50 $200 $50 Shared memory
account | account 2 account 3

© Robert Miller 2008

11/16/2008

Suppose A and C run at the same time

A get balance $50 C get balance $50
add deposit +$100 add deposit +$100
write back total $150 write back total $150

» Neither answer is right!

This is an example of a race condition

» A race condition means that the correctness of the program depends on

the relative timing of events in concurrent computations

e “Alsin a race with C” [A get balance

» Some interleavings of events may be OK, e.g.: — ad§ deposit
but other interleavings produce wrong answers write back total

C get balance

add deposit
write back total

Correctness of a concurrent
program should not depend on
accidents of timing

» Race conditions are nasty bugs -- may be rarely observed, hard to

reproduce, hard to debug, but may haye very serious effects

rt 2008

$50
+$100
$150

$150

+$100
$250

A and C need to synchronize with each other

» Locks are a common synchronization mechanism

» Holding a lock means “I'm changing this; don’t touch it right now”

» Suppose C acquires the lock first; then A must wait to read and write the
balance until C finishes and releases the lock

» Ensures that A and C are synchronized, but B can run independently on a
different account (with a different lock)

Cash
machines

waiting for lock &r Mng for lock

Bank $50 $200 $50

Shared memory

C B free
lock holder ———
© Robert Miller 2008
account | account 2 account 3

Suppose A and B are making simultaneous transfers

» A transfer between accounts needs to lock both accounts, so that money

can’t disappear from the system
» A and B each acquire the lock on the “from” account

» Now each must wait for the other to give up the lock on the “to” account

» Stalemate! A and B are frozen,
and the accounts are locked up. A B
“ ”»”
Deadly embrace transfer $100 transfer $200
> Deadlock occurs when concurrent fromaccount | from account 2
modules are stuck waiting for each to account 2 to account |

other to do something

> A deadlock may involve more than T A

two modules (e.g., a cycle of

Shared

transfers among N accounts) memory
> You can have deadlock without A B
using locks — example later account | account 2

© Robert Miller 2008

Preventing the deadlock

» One solution is to change the locking granularity — e.g. use one lock on
the entire bank, instead of a lock on each account

FRIEERlS
EEE

one lock per account one lock for the whole bank

Choosing lock granularity is hard

» If locking is too coarse, then you lose concurrency (e.g. only one cash
machine can run at a time)

» If locking is too fine, then you get race conditions and/or deadlocks
» Easy to get this wrong

© Robert Miller 2008

11/16/2008

Modules interact by sending messages to each other
» Incoming requests are placed in a queue to be handled one at a time

» Sender doesn’t stop working while waiting for an answer to its request; it
handles more requests from its own queue

> Reply eventually comes back as another message

A B C D
deposit $100 withdraw $100 deposit $100 get balance
to account | from account 2 to account | of account |

get bal

queue for N\
Account | dep $100 <
dep $100 wdrw $100 |
] Account | Account 2 Account 3
Accounts are bal: $50 bal: $200 bal: $50
now modules,

. . © Robert Miller 2008
not just memory locations

Message passing doesn’t eliminate race conditions

» Suppose the account state machine supports get-balance and withdraw
operations (with corresponding messages)

» Can Alice and Bob always stay out of the OVERDRAWN state?

withdraw
i withdraw
Alice Bob —
get-balance get-balance
if balance > $75, if balance > $50,) OK OVERDRAWN
withdraw $75 withdraw $50

Account Q get-

bal: $100 balance

» Lesson: need to carefully choose the atomic (indivisible) operations of the
state machine — withdraw-if-sufficient-funds would be better

Message-passing can have deadlocks too

» Particularly when using finite queues that can fill up

© Robert Miller 2008

Poor coverage
» Recall our notions of coverage
« all states, all transitions, or all paths through a state machine

» Given two concurrent state machines (with N states and M states), the
combined system has N x M states (and many more transitions and paths)

» As concurrency increases, the state space explodes, and achieving sufficient
coverage becomes infeasible
Poor reproducibility

» Transitions are nondeterministic, depending on relative timing of events
that are strongly influenced by the environment

* Delays can be caused by other running programs, other network traffic,
operating system scheduling decisions, variations in processor clock
speed, etc.

» Test driver can’t possibly control all these factors
» So even if state coverage were feasible, the test driver can’t reliably
reproduce particular paths thf"#é’ﬂ me S%mbined state machine

We'll focus on message passing, not shared memory
» Locking strategy for shared-memory paradigm is hard to get right

» Message-passing paradigm often aligns directly with the real-world
workflow of a problem

» But message passing is less suited to some problems, e.g. a big shared data
structure

© Robert Miller 2008

11/16/2008

» A thread is a locus of control (i.e. program counter + stack, representing
a position in a running program)

* Simulates a fresh processor running the same program in a different
place

» A process always has at least one thread (the main thread)

» Threads can share any memory in the process, as long as they can get a
reference to it

» Threads must set up message passing explicitly (e.g. by creating queues)

Process

TI T2

A A
- o .
memory

© Robert Miller 2007

How can | have many concurrent threads with only one

or two processors in my computer?

» When there are more threads than processors, concurrency is simulated
by time slicing (processor switches between threads)

» Time slicing happens unpredictably and nondeterministically

Tl T2 T3

\‘
\
\

T3 a thread may

be paused and
| resumed at
T2 any time ‘
Tl \‘
© Robert Miller }Ai‘l

A thread is represented by java.lang.Thread object
> To define a thread, either override Thread or implement Runnable
T1 extends Thread R1 implements Runnable
Thread lifecycle
» Starting arguments can be given to the constructor
new Til(argl, -...) new Thread(new R1(argl, ...))
» Thread is spawned by calling its start() method
> New thread starts its life by calling its own run() method
» Thread dies when run() returns or throws an uncaught exception

© Robert Miller 2007

Use a synchronized queue for message-passing between
threads

» interface java.util.concurrent.BlockingQueue is such a queue

take put @ put

Tl T2 T EMPTY SOME FULL
put
ake @ take
put T3
no take transition in EMPTY state, so a

thread that tries to take from an empty
queue must block (wait) until it can

» ArrayBlockingQueue is a fixed-size queue that uses an array representation

» LinkedBlockingQueue is a growable queue (no FULL state) using a linked-
list representation

© Robert Miller 2007

11/16/2008

What happens when the Ul displays a large album?

| ot | ottt | Pt | e P
B

© Robert Miller 2008

Mouse and keyboard events are accumulated in an
event queue

» Event loop reads an input event from the queue and dispatches it to
listeners on the view hierarchy

» In Java, the event loop runs on a special event-handling thread, started
automatically when a user interface object is created

Swing event-handling thread

Event loop

view hierarchy

event queue

Keyboard

main thread

© Robert Miller 2007

The view hierarchy is a big meatball of shared state
» And there’s no lock protecting it at all

> It's OK to access user interface objects from the event-handling thread
(i.e.,in response to input events)

» But the Swing specification forbids touching — reading or writing — any
Component objects from a different thread

* See “Threads and Swing”,
http://java.sun.com/products/jfc/tsc/articles/threads/threads | .html

* The truth is that Swing’s implementation does have one big lock

(Component.getTreeLock()) but only some Swing methods use it (e.g.

layout)

© Robert Miller 2007

The event queue is also a message-passing queue

» To access or update Swing objects from a different thread, you can put a
message (represented as a Runnable object) on the event queue

SwingUstilities.invokeLater(new Runnable() {
public void run() { content.add(thumbnail); ...} });
» The event loop handles one of these pseudo-events by calling run()

Swing thread

Event loop

:

main thread

display thread

DisplayThread

11/16/2008

BlockingQueue is itself a shared state machine

» But it's OK to use from multiple threads because it has an internal lock
that prevents race conditions within the state machine itself

* So state transitions are guaranteed to be atomic
* This is done by the Java synchronized keyword

BlockingQueue interface

Swing thread - 3
Tou /ﬂ put

E BlockingQueue \ EMPTY SOME FULL
take A\ta@ gke/
DisplayThread

» BlockingQueue is therefore thread-safe (able to be called by multiple
threads safely without threat to its invariants)

» HashSet is not thread-safe; neither is the Swing view hierarchy

© Robert Miller 2007

Lists, Sets, and Maps can be made thread-safe by a
wrapper function

» t = Collections.synchronizedSet(s) returns a thread-safe version of set s,
with a lock that prevents more than one thread from entering it at a time,
forcing the others to block until the lock is free

» So we could imagine synchronizing all our sets:

thumbnails = Collections.synchronizedSet(new HashSet<Thumbnail> ());
This doesn’t fix all race conditions!
» Doesn’t help preserve invariants involving more than one data structure

thumbnails.add(t); . . .
these operations need to be atomic together, to avoid
content.add(t); breaking the rep invariant of PreviewPane

(that all thumbnails are children of content)

© Robert Miller 2007

Objects that never change state are usually* thread-safe

s INIT @a, b.c,..
\77 all possible actions

on the object

» Immutable objects never change state

* e.g,java.lang.String is immutable, so threads can share strings as much
as they like without fear of race conditions, and without any need for
locks or queues

* Caveat: some apparently immutable objects may have hidden state: e.g.
memoizing (caching) method return values.

© Robert Miller 2007

Concurrency

» Multiple computations running simultaneously

Shared-memory & message-passing paradigms

» Shared memory needs a synchronization mechanism, like locks

» Message passing synchronizes on communication channels, like queues
Pitfalls

» Race when correctness of result depends on relative timing of events
» Deadlock when concurrent modules get stuck waiting for each other
Design advice

» Share only immutable objects between threads

» Use blocking queues and SwingUJtilities.invokeLater()

© Robert Miller 2008

11/16/2008

