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MATLAB Tips: Dealing with Imaginary Numbers 

√ 
•	 MATLAB treats the variables i and j as −1 unless you’ve set them explicitly to something else. 

•	 If you make a complex number x, e.g. x=1+i, you can find the real and imaginary parts of x using the 
functions real(x) and imag(x), respectively. 

•	 To find the magnitude of a complex number in MATLAB, use the function abs(). For example, given 
a complex number x, the magnitude |x| is abs(x). 

•	 Likewise, to find the phase of a complex number in MATLAB, use the function angle(). 

•	 And one general note, MATLAB is built around vectors, and as you may recall, vector multiplication 
is not element by element but rather row by column. Here, we’re interested in element by element 
operations since we just want to evaluate an equation (e.g., for the relative dielectric constant given by 
the Lorentz model equation) at a set of points. So if we have a vector omega with all of our frequencies, 
to square each frequency you use omega.^2. The “.” means to do each element separately. Similarly, 
to get the free space wavelength corresponding to those ω, we would do lambda=2*pi*3*10^8./omega, 
which would give us the vector lambda with our wavelengths in meters. Usually, if you forget to use 
the “.” version of the operator, you’ll get an error in MATLAB. 

Problem 8.0 – Make Your Own Exam Problem for Midterm II by April 13 

Write an original exam problem (with solutions) and turn it in (on a separate sheet of paper from the rest of 
the problem set) in class by Wednesday, April 13 (ahead of this problem set due date). This problem should 
be over material covered since the last exam. The most creative and appropriate problem will be selected 
to be one of the problems for Midterm II, so you have a lot of incentive for writing a great problem! 
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Problem 8.1 – Snell’s Law 

In ray optics, it is useful to use Snell’s Law at an interface between two materials: n1sin(θ1) = n2sin(θ2). 

(a)	 Imagine a (collimated) beam of light being shone down to an air-water interface from 5 cm above the 
water at 45◦ from the normal. The index of air is taken to be 1 and the index of water is taken to be 
1.33. A fish is swimming at 15 cm horizontal distance away from the light as shown. At what depth 
will the fish see the beam of light? 

 

d 

5 cm 

15 cm

45± 

n2=1.33 
n1=1 

(b)	 Now the fish is 15 cm deep, looking up at the water at 30◦ as shown and there is a fly skimming the 
water surface 1 cm above the water and changing his position. Can the fish see the fly? Please explain 
your answer. 

 

1 cm

n2=1.33
n1=1

15 cm

n2=1.33
n1=1

30±

1 cm

n2=1.33
n1=1

15 cm

n2=1.33
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30±
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Problem 8.2 – Frustrated Total Internal Reflection 

This problem explores the phenomenon of frustrated total internal reflection and the more general math that 
goes with it. 

In lecture, we discussed what happens when total internal reflection is frustrated by bringing a second 
medium (e.g., glass) into the evanescent field of the reflected wave. Figure 1 shows a schematic of the 
physical setup of frustrated internal reflection, where light which would be reflected internally inside a glass 
waveguide is able to transmit across an air gap into another piece of glass. 

 

Figure 1: Schematic of frustrated internal reflection. 

To simplify our modeling of the above system, we’ll look only in the direction across the air gap, assuming 
that the incoming angle is such that total internal reflection occurs inside the first piece of glass, and therefore, 
the field in the air gap is evanescent. Figure 2 shows a schematic in 1D of the glass-air-glass transition. 
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Figure 2: 1D schematic of coupling via evanescent field. 

We set up the following equations for the electric field in the various regions in Figure 2, setting the incident 
wave’s magnitude to 1 so that the reflection and transmission coefficients (rn and tn) can be solved for 
directly: 

j(ωt−k1xx) j(ωt+k1xx)Ey,I (x, t) = e + rne
jωt + Beαx jωt Ey,II (x, t) = Ae−αx e e

j(ωt−k1xx)Ey,III (x, t) = tne

Assume that µ = µ0 in all three regions. 

(a)	 Using the boundary condition on the tangential electric field at x = 0 and x = d, find two equations 
relating the unknowns rn, A, B, and tn. 

(b)	 Find the tangential magnetic fields using Faraday’s Law: 

∂Ey ∂Bz 
= − 

∂x ∂t 
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Then, using the boundary condition on the tangential magnetic field at x = 0 and x = d, find two 
equations relating the unknowns rn, A, B, and tn. 

(c)	 Now that you have four equations and four unknowns, set up a matrix equation in the form of Mxx = C, 
where: ⎞⎛ 

xx = 
⎜⎜⎝ 

rn 

A 
B 
tn 

⎟⎟⎠ 

With this matrix equation, you could solve for the complex amplitudes rn, A, B, and tn. We’ll see 
this again when we cover tunneling in quantum mechanics. 

2
(d)	 Using MATLAB, find the transmitted intensity, |tn| , if the incident angle in region I (glass) is θ = 45◦ , 

the index of glass is n1 = 1.5, the index of air is n2 = 1, the free space wavelength is λ0 = 640 nm, and 
the air gap is d = 100 nm. 

You’ll need to numerically solve the system of equations represented by your matrix in (c) using 
MATLAB. To find the inverse of M, use the MATLAB function inv() (e.g., x=inv(M)*C). 

Problem 8.3 – Thin Film Interference 

In class we have seen the Fresnel equations for reflected and transmitted wave amplitudes. These equations 
assume that the materials are semi-infinite (that they continue for ever). If we look at reflections from 
sections of materials with finite thickness we have to take into account interference phenomenon in addition 
to the transmission/reflection amplitudes for semi-infinite material boundaries. In this problem we will look 
at the reflection of light from a film of oil on top of water. See the diagram below. 

Geometry for Problem 8.4, not drawn to scale. 

There can be a peak in reflected intensity only if the difference in phase gained between path AB and path 
ACD is equal to some integer multiple of 2π. |φAB − φACD| = 2πN . 

(a)	 Write an expression for the phase difference in terms of Θi, n1, n2, d, and λ0. 

(b)	 If the oil film is 1 µm thick, at what angles do we see the first strong reflections for λ = 450nm, 
λ = 530nm, and λ = 630nm? 

(c)	 Using the results from above, why do we see a rainbow of colors on an oil slick? 

(d)	 For TM polarized light, what happens when the angle for constructive interference is equal to Brewster’s 
Angle for the air-oil interface? 

4



6.007 Spring 2011 Problem Set 8: Electromagnetic Waves at Boundaries 

Problem 8.4 – Rainbows
 

A very narrow beam of unpolarized red light of intensity Io is incident (at A) on a spherical water drop (see 
figure above). At A, some of the light is reflected and some enters the water drop. The refracted light reaches 
the surface of the drop at B where some of the light is reflected back into the water, and some emerges into 
the air. The light that is reflected back into the water reaches the surface of the drop at C where some of 
the light is reflected back into the drop, and some emerges into the air. The index of refraction of water for 
the red light is nred =1.331. 

(a) Using the data form the figure, what is the angle α? (You can leave this answer in the form of an 
expression.) 

(b) What is the intensity of light that refracts into the drop at A? (Take into account both TE and TM 
polarized light.) 

(c) For what value of angle would you find that the light reflected at A is entirely TE polarized ? (You can 
leave this answer in the form of an expression.) 

(d) What is the dominant polarization of light that emerges at B? Explain. 
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(e) For blue light, the index of refraction in water is 1.343. The speed of blue light in water is therefore about 
1% slower than that of red light. In the figure above, showing the red-light path, assume that the incoming 
narrow beam of light also contains blue-light and draw the trajectory that the blue-light beam would take 
after it enters the water droplet at A. 

(f) If you look at the rainbow in the sky you will notice that the blue band of color is closest to the ground 
and the red color band is highest up. Using the figure below explain why the colors are ordered in this 
manner. 
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