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19 Deviations
In some cases, a random variable is likely to be very close to its expected value.
For example, if we flip 100 fair, mutually-independent coins, it is very likely that
we will get about 50 heads. In fact, we proved in Section 17.5 that the probability
of getting fewer than 25 or more than 75 heads are each less than 3 � 10�7. In such
cases, the mean provides a lot of information about the random variable.

In other cases, a random variable is likely to be far from its expected value. For
example, suppose we flipped 100 fair coins that are glued together so that they all
come out “heads” or they call all come out “tails.” In this case, the expected value
of the number of heads is still 50, but the actual number of heads is guaranteed to
be far from this value—it will be 0 or 100, each with probability 1=2.

Mathematicians have developed a variety of measures and methods to help us
understand how a random variable performs in comparison to its mean. The sim-
plest and most widely used measure is called the variance of the random variable.
The variance is a single value associated with the random variable that is large for
random variables that are likely to deviate significantly from the mean and that is
small otherwise.

19.1 Variance

19.1.1 Definition and Examples

Consider the following two gambling games:

Game A: You win $2 with probability 2=3 and lose $1 with probability 1=3.

Game B: You win $1002 with probability 2=3 and lose $2001 with probabil-
ity 1=3.

Which game would you rather play? Which game is better financially? We have the
same probability, 2/3, of winning each game, but that does not tell the whole story.
What about the expected return for each game? Let random variables A and B be
the payoffs for the two games. For example, A is 2 with probability 2/3 and -1 with
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probability 1/3. We can compute the expected payoff for each game as follows:

ExŒA� D 2 �
2

3
C .�1/ �

1

3
D 1;

ExŒB� D 1002 �
2

3
C .�2001/ �

1

3
D 1:

The expected payoff is the same for both games, but they are obviously very
different! The stakes are a lot higher for Game B and so it is likely to deviate
much farther from its mean than is Game A. This fact is captured by the notion of
variance.

Definition 19.1.1. The variance VarŒR� of a random variable R is

VarŒR� WWD ExŒ.R � ExŒR�/2�:

In words, the variance of a random variable R is the expectation of the square of
the amount by which R differs from its expectation.

Yikes! That’s a mouthful. Try saying that 10 times in a row!
Let’s look at this definition more carefully. We’ll start with R � ExŒR�. That’s

the amount by whichR differs from its expectation and it is obviously an important
measure. Next, we square this value. More on why we do that in a moment. Finally,
we take the the expected value of the square. If the square is likely to be large, then
the variance will be large. If it is likely to be small, then the variance will be small.
That’s just the kind of statistic we are looking for. Let’s see how it works out for
our two gambling games.

We’ll start with Game A:

A � ExŒA� D

(
1 with probability 2

3

�2 with probability 1
3

.A � ExŒA�/2 D

(
1 with probability 2

3

4 with probability 1
3

ExŒ.A � ExŒA�/2� D 1 �
2

3
C 4 �

1

3

VarŒA� D 2: (19.1)
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For Game B, we have

B � ExŒB� D

(
1001 with probability 2

3

�2002 with probability 1
3

.B � ExŒB�/2 D

(
1;002;001 with probability 2

3

4;008;004 with probability 1
3

ExŒ.B � ExŒB�/2� D 1;002;001 �
2

3
C 4;008;004 �

1

3

VarŒB� D 2;004;002:

The variance of Game A is 2 and the variance of Game B is more than two
million! Intuitively, this means that the payoff in Game A is usually close to the
expected value of $1, but the payoff in Game B can deviate very far from this
expected value.

High variance is often associated with high risk. For example, in ten rounds
of Game A, we expect to make $10, but could conceivably lose $10 instead. On
the other hand, in ten rounds of Game B, we also expect to make $10, but could
actually lose more than $20,000!

Why Bother Squaring?

The variance is the average of the square of the deviation from the mean. For this
reason, variance is sometimes called the “mean squared deviation.” But why bother
squaring? Why not simply compute the average deviation from the mean? That is,
why not define variance to be ExŒR � ExŒR��?

The problem with this definition is that the positive and negative deviations from
the mean exactly cancel. By linearity of expectation, we have:

Ex
�
R � ExŒR�

�
D ExŒR� � Ex

�
ExŒR�

�
:

Since ExŒR� is a constant, its expected value is itself. Therefore

Ex
�
R � ExŒR�

�
D ExŒR� � ExŒR� D 0:

By this definition, every random variable would have zero variance, which would
not be very useful! Because of the square in the conventional definition, both pos-
itive and negative deviations from the mean increase the variance, and they do not
cancel.

Of course, we could also prevent positive and negative deviations from canceling
by taking an absolute value. In other words, we could compute ExŒ jR � ExŒR�j �.
But this measure doesn’t have the many useful properties that variance has, and so
mathematicians went with squaring.
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19.1.2 Standard Deviation

Because of its definition in terms of the square of a random variable, the variance
of a random variable may be very far from a typical deviation from the mean. For
example, in Game B above, the deviation from the mean is 1001 in one outcome
and -2002 in the other. But the variance is a whopping 2,004,002.

From a dimensional analysis viewpoint, the “units” of variance are wrong: if the
random variable is in dollars, then the expectation is also in dollars, but the variance
is in square dollars.

For these reasons, people often describe the deviation of a random variable using
standard deviation instead of variance.

Definition 19.1.2. The standard deviation �R of a random variable R is the square
root of the variance:

�R WWD
p

VarŒR� D
q

ExŒ.R � ExŒR�/2�:

So the standard deviation is the square root of the mean of the square of the
deviation, or the root mean square for short. It has the same units—dollars in our
example—as the original random variable and as the mean. Intuitively, it measures
the average deviation from the mean, since we can think of the square root on the
outside as roughly canceling the square on the inside.

For example, the standard deviations for A and B are

�A D
p

VarŒA� D
p
2 � 1:41;

�B D
p

VarŒB� D
p
2; 004; 002 � 1416:

The random variable B actually deviates from the mean by either positive 1001
or negative 2002; therefore, the standard deviation of 1416 describes this situation
reasonably well.

19.1.3 An Alternative Formulation

Applying linearity of expectation to the formula for variance yields a convenient
alternative formula.

Lemma 19.1.3. For any random variable R,

VarŒR� D ExŒR2� � Ex2ŒR�:

Here we use the notation Ex2ŒR� as shorthand for .ExŒR�/2. Remember that
ExŒR2� is generally not equal to Ex2ŒR�. We know the expected value of a product
is the product of the expected values for independent variables, but not in general.
And R is not independent of itself unless it is constant.
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Proof of Lemma 19.1.3. Let � D ExŒR�. Then

VarŒR� D ExŒ.R � ExŒR�/2� (Definition 19.1.1 of variance)

D ExŒ.R � �/2� (definition of �)

D ExŒR2 � 2�RC �2�

D ExŒR2� � 2�ExŒR�C �2 (linearity of expectation)

D ExŒR2� � 2�2 C �2 (definition of �)

D ExŒR2� � �2

D ExŒR2� � Ex2ŒR�: (definition of �) �

For example, let’s take another look at Game A from Section 19.1 where you
win $2 with probability 2=3 and lose $1 with probability 1=3. Then

ExŒA� D 2 �
2

3
C .�1/ �

1

3
D 1

and
ExŒA2� D 4 �

2

3
C 1 �

1

3
D 3:

By Lemma 19.1.3, this means that

VarŒA� D ExŒA2� � Ex2ŒA� D 3 � 12 D 2;

confirming the result in Equation 19.1.
The alternate formulation of variance given in Lemma 19.1.3 has a cute implica-

tion:

Corollary 19.1.4. If R is a random variable, then ExŒR2� � Ex2ŒR�.

Proof. We defined VarŒR� as an average of a squared expression, so VarŒR� is non-
negative. Then we proved that VarŒR� D ExŒR2� � Ex2ŒR�. This implies that
ExŒR2� � Ex2ŒR� is nonnegative. Therefore, ExŒR2� � Ex2ŒR�. �

In words, the expectation of a square is at least the square of the expectation.
The two are equal exactly when the variance is zero:

ExŒR2� D Ex2ŒR� iff ExŒR2� � Ex2ŒR� D 0 iff VarŒR� D 0:

This happens precisely when

Pr
�
R D ExŒR�

�
D 1I

namely, when R is a constant.1

1Technically, R could deviate from its mean on some sample points with probability 0, but we are
ignoring events of probability 0 when computing expectations and variances.
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19.1.4 Indicator Random Variables

Computing the variance of an indicator random variable is straightforward given
Lemma 19.1.3.

Lemma 19.1.5. Let B be an indicator random variable for which PrŒB D 1� D p.
Then

VarŒB� D p � p2 D p.1 � p/: (19.2)

Proof. By Lemma 18.1.3, ExŒB� D p. But since B only takes values 0 and 1,
B2 D B . So

VarŒB� D ExŒB2� � Ex2ŒB� D p � p2;

as claimed. �

For example, let R be the number of heads when you flip a single fair coin. Then

VarŒR� D
1

2
�

�
1

2

�2
D
1

4
(19.3)

and

�R D

r
1

4
D
1

2
:

19.1.5 Mean Time to Failure

As another example, consider the mean time to failure problem, described in Sec-
tion 18.1.4. If the system crashes at each step with probability p, then we already
know that the mean time to failure is 1=p. In other words, if C is the number of
steps up to and including the step when the first crash occurs, then

ExŒC � D
1

p
:

What about the variance ofC ? To use Lemma 19.1.3, we need to compute ExŒC 2�.
As in Section 18.1.4, we can do this by summing over all the sample points or we
can use the Law of Total Expectation. The latter approach is simpler, so we’ll do
that. The analysis breaks into two cases: the system crashes in the first step or it
doesn’t. Hence,

ExŒC 2� D 12 � p C ExŒ.C C 1/2�.1 � p/

D p C ExŒC 2�.1 � p/C 2ExŒC �.1 � p/C .1 � p/

D 1C ExŒC 2�.1 � p/C 2
�
1 � p

p

�
:
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Simplifying, we find that

p ExŒC 2� D
2 � p

p

and that
ExŒC 2� D

2 � p

p2
:

Using Lemma 19.1.3, we conclude that

VarŒC � D ExŒC 2� � Ex2ŒC �

D
2 � p

p2
�
1

p2

D
1 � p

p2
:

19.1.6 Uniform Random Variables

Computing the variance of a uniform random variable is also straightforward given
Lemma 19.1.3. For example, we can compute the variance of the outcome of a fair
die R as follows:

ExŒR2� D
1

6
.12 C 22 C 32 C 42 C 52 C 62/ D

91

6
;

Ex2ŒR� D
�
3
1

2

�2
D
49

4
;

VarŒR� D ExŒR2� � Ex2ŒR� D
91

6
�
49

4
D
35

12
:

For a general uniform random variable R on f1; 2; 3; : : : ng, the variance can be
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computed as follows:

ExŒR� D
1

n
.1C 2C � � � C n/

D
1

n
�
n.nC 1/

2

D
nC 1

2
:

ExŒR2� D
1

n
.12 C 22 C � � � C n2/

D
1

n
�
.2nC 1/n.nC 1/

6

D
.2nC 1/.nC 1/

6
:

VarŒR� D ExŒR2� � Ex2ŒR�

D
.2nC 1/.nC 1/

6
�

�
nC 1

2

�2
D
n2 � 1

12
:

19.1.7 Dealing with Constants

It helps to know how to calculate the variance of aRC b:

Theorem 19.1.6. Let R be a random variable, and let a and b be constants. Then

VarŒaRC b� D a2 VarŒR�: (19.4)

Proof. Beginning with Lemma 19.1.3 and repeatedly applying linearity of expec-
tation, we have:

VarŒaR� D ExŒ.aRC b/2� � Ex2ŒaRC b�

D ExŒa2R2 C 2abRC b2� � .a ExŒR�C b/2

D a2 ExŒR2�C 2ab ExŒR�C b2 � a2 Ex2ŒR� � 2ab ExŒR� � b2

D a2 ExŒR2� � a2 Ex2ŒR�

D a2
�
ExŒR2� � Ex2ŒR�

�
D a2 VarŒR� (by Lemma 19.1.3): �

Corollary 19.1.7.
�aRCb D jaj �R:

8
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19.1.8 Variance of a Sum

In general, the variance of a sum is not equal to the sum of the variances, but
variances do add for independent random variables. In fact, mutual independence
is not necessary: pairwise independence will do.

Theorem 19.1.8. If R1 and R2 are independent random variables, then

VarŒR1 CR2� D VarŒR1�C VarŒR2�: (19.5)

Proof. As with the proof of Theorem 19.1.6, this proof uses repeated applications
of Lemma 19.1.3 and Linearity of Expectation.

VarŒR1 CR2� D ExŒ.R1 CR2/2� � Ex2ŒR1 CR2�

D ExŒR21 C 2R1R2 CR
2� � .ExŒR1�C ExŒR2�/2

D ExŒR21�C 2ExŒR1R2�C ExŒR22�

� Ex2ŒR1� � 2ExŒR1�ExŒR2� � Ex2ŒR2�

D VarŒR1�C VarŒR2�C 2.ExŒR1R2� � ExŒR1�ExŒR2�/

D VarŒR1�C VarŒR2�:

The last step follows because

ExŒR1R2� D ExŒR1�ExŒR2�

when R1 and R2 are independent. �

Note that Theorem 19.1.8 does not necessarily hold if R1 and R2 are dependent
since then it would generally not be true that

ExŒR1R2� D ExŒR1�ExŒR2� (19.6)

in the last step of the proof. For example, suppose that R1 D R2 D R. Then
Equation 19.6 holds only if R is essentially constant.

The proof of Theorem 19.1.8 carries over straightforwardly to the sum of any
finite number of variables.

Theorem 19.1.9 (Pairwise Independent Additivity of Variance). IfR1, R2, . . . , Rn
are pairwise independent random variables, then

VarŒR1 CR2 C � � � CRn� D VarŒR1�C VarŒR2�C � � � C VarŒRn�: (19.7)

Unfortunately, there is no product rule for computing variances, even if the ran-
dom variables are mutually independent. However, we can use Theorem 19.1.9 to
quickly compute the variance of a random variable with a general binomial distri-
bution.

9
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19.1.9 Binomial Distributions

Lemma 19.1.10 (Variance of the Binomial Distribution). If J has a binomial dis-
tribution with parameters n and p, then

VarŒJ � D np.1 � p/: (19.8)

Proof. From the definition of the binomial distribution, we can think of J as being
the number of “heads” when you flip n mutually independent coins, each of which
is “heads” with probability p. Thus J can be expressed as the sum of n mutually
independent indicator variables Ji where

PrŒJi D 1� D p

for 1 � i � n. From Lemma 19.1.5, we know that

VarŒJi � D p.1 � p/:

By Theorem 19.1.9, this means that

VarŒJ � D
nX
iD1

VarŒJi � D np.1 � p/: �

For example, suppose we flip n mutually independent2 fair coins. Let R be the
number of heads. Then Theorem 19.1.9 tells us that

VarŒR� D n
�
1

2

��
1 �

1

2

�
D
n

4
:

Hence,

�R D

p
n

2
:

This value is small compared with

ExŒR� D
n

2
;

which should not be surprising since we already knew from Section 17.5 that R is
unlikely to stray very far from its mean.

2Actually, we only need to assume pairwise independence for this to be true using Theorem 19.1.9.
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19.2 Markov’s Theorem

The variance of a random variable gives us a rough idea of the amount by which a
random variable is likely to deviate from its mean. But it does not directly give us
specific bounds on the probability that the deviation exceeds a specified threshold.
To obtain such specific bounds, we’ll need to work a little harder.

In this section, we derive a famous result known as Markov’s Theorem that gives
an upper bound on the probability that a random variable exceeds a specified thresh-
old. In the next section, we give a similar but stronger result known as Chebyshev’s
Theorem. The difference between these results is that Markov’s Theorem depends
only on the mean of the random variable, whereas Chebyshev’s Theorem makes
use of the mean and the variance. Basically, the more you know about a random
variable, the better bounds you can derive on the probability that it deviates from
its mean.

19.2.1 A Motivating Example

The idea behind Markov’s Theorem can be explained with a simple example involv-
ing intelligence quotients, or IQs. This quantity was devised so that the average IQ
measurement would be 100. From this fact alone we can conclude that at most 1/3
the population can have an IQ of 300 or more, because if more than a third had an
IQ of at least 300, then the average IQ would have to be more than .1=3/300 D 100,
contradicting the fact that the average is 100. So the probability that a randomly
chosen person has an IQ of 300 or more is at most 1/3. Of course this is not a very
strong conclusion since no IQ over 200 has ever been recorded.

By the same logic, we can also conclude that at most 2/3 of the population can
have an IQ of 150 or more. IQ’s over 150 have certainly been recorded, although a
much smaller fraction than 2/3 of the population actually has an IQ that high.

Although these conclusions about IQ are weak, they are actually the strongest
general conclusions that can be reached about a random variable using only the fact
that it is nonnegative and its mean is 100. For example, if we choose a random
variable equal to 300 with probability 1/3, and 0 with probability 2/3, then its mean
is 100, and the probability of a value of 300 or more really is 1/3. So we can’t hope
to get a better upper bound based solely on this limited amount of information.

Markov’s Theorem characterizes the bounds that can be achieved with this kind
of analysis

11
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19.2.2 The Theorem

Theorem 19.2.1 (Markov’s Theorem). IfR is a nonnegative random variable, then
for all x > 0,

PrŒR � x� �
ExŒR�
x

:

Proof. For any x > 0

ExŒR� D
X

y2range.R/

y PrŒR D y�

�

X
y�x;

y2range.R/

y PrŒR D y� (because R � 0)

�

X
y�x;

y2range.R/

x PrŒR D y�

D x
X
y�x;

y2range.R/

PrŒR D y�

D x PrŒR � x�: (19.9)

Hence,

PrŒR � x� �
ExŒR�
x

: �

Corollary 19.2.2. If R is a nonnegative random variable, then for all c � 1,

Pr
�
R � c � ExŒR�

�
�
1

c
: (19.10)

Proof. Set x D c ExŒR� in Theorem 19.2.1. �

As an example, suppose we flip 100 fair coins and use Markov’s Theorem to
compute the probability of getting all heads:

PrŒheads � 100� �
ExŒheads�
100

D
50

100
D
1

2
:

If the coins are mutually independent, then the actual probability of getting all
heads is a minuscule 1 in 2100. In this case, Markov’s Theorem looks very weak.
However, in applying Markov’s Theorem, we made no independence assumptions.
In fact, if all the coins are glued together, then probability of throwing all heads is
exactly 1=2. In this nasty case, Markov’s Theorem is actually tight!

12
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The Chinese Appetizer Problem

Suppose that n people are seated at a circular table and that each person has an
appetizer in front of them on a rotating Chinese banquet tray. Just as everyone
is about to dig in, some joker spins the tray so that each person receives a random
appetizer. We are interested in the number of peopleR that get their same appetizer
as before, assuming that the n appetizers are all different.

Each person gets their original appetizer with probability 1=n. Hence, by Lin-
earity of Expectation,

ExŒR� D n �
1

n
D 1:

What is the probability that all n people get their original appetizer back? Markov’s
Theorem tells us that

PrŒR D n� D PrŒR � n� �
ExŒR�
n
D
1

n
:

In fact, this bound is tight sine everyone gets their original appetizers back if and
only if the rotating tray returns to its original configuration, which happens with
probability 1=n.

The Chinese Appetizer problem is similar to the Hat Check problem that we
studied in Section 18.3.2, except that no distribution was specified in the Hat Check
problem—we were told only that each person gets their correct hat back with prob-
ability 1=n. If the hats are scrambled according to uniformly random permutations,
then the probability that everyone gets the right hat back is 1=nŠ, which is much
less than the 1=n upper bound given by Markov’s Theorem. So, in this case, the
bound given by Markov’s Theorem is not close to the actual probability.

What is the probability that at least two people get their right hats back? Markov’s
Theorem tells us that

PrŒR � 2� �
ExŒR�
2
D
1

2
:

In this case, Markov’s Theorem is not too far off from the right answer if the hats
are distributed according to a random permutation3 but it is not very close to the
correct answer 1=n for the case when the hats are distributed as in the Chinese
Appetizer problem.

Why R Must be Nonnegative

Remember that Markov’s Theorem applies only to nonnegative random variables!
Indeed, the theorem is false if this restriction is removed. For example, let R be -10

3Proving this requires some effort.

13
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with probability 1=2 and 10 with probability 1=2. Then

ExŒR� D �10 �
1

2
C 10 �

1

2
D 0:

Suppose that we now tried to compute PrŒR � 5� using Markov’s Theorem:

PrŒR � 5� �
ExŒR�
5
D
0

5
D 0:

This is the wrong answer! Obviously, R is at least 5 with probability 1=2.
On the other hand, we can still apply Markov’s Theorem indirectly to derive a

bound on the probability that an arbitrary variable likeR is 5 or more. For example,
given any random variable, R with expectation 0 and values � �10, we can con-
clude that PrŒR � 5� � 2=3. To prove this fact, we define T WWDRC 10. Then T is
a nonnegative random variable with expectation ExŒRC 10� D ExŒR�C 10 D 10,
so Markov’s Theorem applies and tells us that PrŒT � 15� � 10=15 D 2=3. But
T � 15 iff R � 5, so PrŒR � 5� � 2=3, as claimed.

19.2.3 Markov’s Theorem for Bounded Variables

Suppose we learn that the average IQ among MIT students is 150 (which is not
true, by the way). What can we say about the probability that an MIT student has
an IQ of more than 200? Markov’s Theorem immediately tells us that no more than
150=200 or 3=4 of the students can have such a high IQ. That’s because if R is the
IQ of a random MIT student, then

PrŒR > 200� �
ExŒR�
200

D
150

200
D
3

4
:

But let’s also suppose that no MIT student has an IQ less than 100 (which may
be true). This means that if we let T WWD R � 100, then T is nonnegative and
ExŒT � D 50, so we can apply Markov’s Theorem to T and conclude:

PrŒR > 200� D PrŒT > 100� �
ExŒT �
100

D
50

100
D
1

2
:

So only half, not 3/4, of the students can be as amazing as they think they are. A
bit of a relief!

More generally, we can get better bounds applying Markov’s Theorem to R � l
instead of R for any lower bound l on R, even when l is negative.

Theorem 19.2.3. Let R be a random variable for which R � l for some l 2 R.
Then for all x � l ,

PrŒR � x� �
ExŒR� � l
x � l

:

14
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Proof. Define
T WWDR � l:

Then T is a nonnegative random variable with mean

ExŒT � D ExŒR � l � D ExŒR� � l:

Hence, Markov’s Theorem implies that

PrŒT � x � l � �
ExŒT �
x � l

D
ExŒR� � l
x � l

:

The result then follows from the fact that

PrŒR � x� D PrŒR � l � x � l �

D PrŒT � x � l �: �

19.2.4 Deviations Below the Mean

Markov’s Theorem says that a random variable is unlikely to greatly exceed the
mean. Correspondingly, there is a variation of Markov’s Theorem that says a ran-
dom variable is unlikely to be much smaller than its mean.

Theorem 19.2.4. Let u 2 R and let R be a random variable such that R � u.
Then for all x < u,

PrŒR � x� �
u � ExŒR�
u � x

:

Proof. The proof is similar to that of Theorem 19.2.3. Define

S WWD u �R:

Then S is a nonnegative random variable with mean

ExŒS� D ExŒu �R� D u � ExŒR�:

Hence, Markov’s Theorem implies that

PrŒS � u � x� �
ExŒS�
u � x

D
u � ExŒR�
u � x

:

The result then follows from the fact that

PrŒR � x� D PrŒu � S � x� D PrŒS � u � x�: �

15
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For example, suppose that the class average on a midterm was 75/100. What
fraction of the class scored below 50?

There is not enough information here to answer the question exactly, but Theo-
rem 19.2.4 gives an upper bound. Let R be the score of a random student. Since
100 is the highest possible score, we can set u D 100 to meet the condition in the
theorem that R � u. Applying Theorem 19.2.4, we find:

PrŒR � 50� �
100 � 75

100 � 50
D
1

2
:

That is, at most half of the class scored 50 or worse. This makes sense; if more
than half of the class scored 50 or worse, then the class average could not be 75,
even if everyone else scored 100. As with Markov’s Theorem, Theorem 19.2.4
often gives weak results. In fact, based on the data given, the entire class could
have scored above 50.

19.2.5 Using Markov’s Theorem to Analyze Non-Random Events

In the previous example, we used a theorem about a random variable to conclude
facts about non-random data. For example, we concluded that if the average score
on a test is 75, then at most 1=2 the class scored 50 or worse. There is no random-
ness in this problem, so how can we apply Theorem 19.2.4 to reach this conclusion?

The explanation is not difficult. For any set of scores S D fs1; s2; : : : ; sng, we
introduce a random variable R such that

PrŒR D si � D
(# of students with score si )

n
:

We then use Theorem 19.2.4 to conclude that PrŒR � 50� � 1=2. To see why
this means (with certainty) that at most 1=2 of the students scored 50 or less, we
observe that

PrŒR � 50� D
X
si�50

PrŒR D si �

D

X
si�50

(# of students with score si )
n

D
1

n
(# of students with score 50 or less):

So, if PrŒR � 50� � 1=2, then the number of students with score 50 or less is at
most n=2.

16
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19.3 Chebyshev’s Theorem

As we have just seen, Markov’s Theorem can be extended by applying it to func-
tions of a random variable R such as R � l and u � R. Even stronger results can
be obtained by applying Markov’s Theorem to powers of R.

Lemma 19.3.1. For any random variable R, ˛ 2 RC, and x > 0,

PrŒjRj � x� �
ExŒjRj˛�
x˛

:

Proof. The event jRj � x is the same as the event jRj˛ � x˛. Since jRj˛ is
nonnegative, the result follows immediately from Markov’s Theorem. �

Similarly,

PrŒjR � ExŒR�j � x� �
ExŒ.R � ExŒR�/˛�

x˛
: (19.11)

The restatement of Equation 19.11 for ˛ D 2 is known as Chebyshev’s Theorem.

Theorem 19.3.2 (Chebyshev). Let R be a random variable and x 2 RC. Then

PrŒjR � ExŒR�j � x� �
VarŒR�
x2

:

Proof. Define
T WWDR � ExŒR�:

Then

Pr
�
jR � ExŒR�j � x

�
D PrŒjT j � x�

D PrŒT 2 � x2�

�
ExŒT 2�
x2

(by Markov’s Theorem)

D
ExŒ.R � ExŒR�/2�

x2

D
VarŒR�
x2

: (by Definition 19.1.1) �

Corollary 19.3.3. Let R be a random variable, and let c be a positive real number.

PrŒjR � ExŒR�j � c�R� �
1

c2
:

17
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Proof. Substituting x D c�R in Chebyshev’s Theorem gives:

PrŒjR � ExŒR�j � c�R� �
VarŒR�
.c�R/2

D
�2R

.c�R/2
D

1

c2
: �

As an example, suppose that, in addition to the national average IQ being 100,
we also know the standard deviation of IQ’s is 10. How rare is an IQ of 300 or
more?

Let the random variable R be the IQ of a random person. So we are supposing
that ExŒR� D 100, �R D 10, and R is nonnegative. We want to compute PrŒR �
300�.

We have already seen that Markov’s Theorem 19.2.1 gives a coarse bound, namely,

PrŒR � 300� �
1

3
:

Now we apply Corollary 19.3.3 to the same problem:

PrŒR � 300� � Pr
�
jR � 100j � 20�R

�
�

1

400
: (19.12)

So Chebyshev’s Theorem implies that at most one person in four hundred has
an IQ of 300 or more. We have gotten a much tighter bound using the additional
information, namely the standard deviation of R, than we could get knowing only
the expectation.

More generally, Corollary 19.3.3 tells us that a random variable is never likely
to stray by more than a few standard deviations from its mean. For example, plug-
ging c D 3 into Corollary 19.3.3, we find that the probability that a random variable
strays from the mean by more than 3� is at most 1=9.

This fact has a nice pictorial characterization for pdf’s with a “bell-curve” shape;
namely, the width of the bell is O.�/, as shown in Figure 19.1.

19.3.1 Bounds on One-Sided Errors

Corollary 19.3.3 gives bounds on the probability of deviating from the mean in
either direction. If you only care about deviations in one direction, as was the case
in the IQ example, then slightly better bounds can be obtained.

Theorem 19.3.4. For any random variable R and any c > 0,

PrŒR � ExŒR� � c�R� �
1

c2 C 1

and
PrŒR � ExŒR� � �c�R� �

1

c2 C 1
:

18
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mean

O.¢/

Figure 19.1 If the pdf of a random variable is “bell-shaped,” then the width of the
bell is O.�/.

The proof of Theorem 19.3.4 is trickier than the proof of Chebyshev’s Theorem
and we will not give the details here. Nor will we prove the fact that the bounds in
Theorem 19.3.4 are the best bounds that you can obtain if you know only the mean
and standard deviation of the random variable R.

Returning to the IQ example, Theorem 19.3.4 tells us that

PrŒR � 300� � PrŒR � 100 � 20�R� �
1

401
;

which is a very slight improvement over Equation 19.12.
As another example, suppose we give an exam. What fraction of the class can

score more than 2 standard deviations from the average? If R is the score of a
random student, then

PrŒjR � ExŒR�j � 2�R� �
1

4
:

For one-sided error, the fraction that could be 2 standard deviations or more above
the average is at most

1

22 C 1
D
1

5
:

This results holds no matter what the test scores are, and is again a deterministic
fact derived using probabilistic tools.
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19.4 Bounds for Sums of Random Variables

If all you know about a random variable is its mean and variance, then Cheby-
shev’s Theorem is the best you can do when it comes to bounding the probabil-
ity that the random variable deviates from its mean. In some cases, however, we
know more—for example, that the random variable has a binomial distribution—
and then it is possible to prove much stronger bounds. Instead of polynomially
small bounds such as 1=c2, we can sometimes even obtain exponentially small
bounds such as 1=ec . As we will soon discover, this is the case whenever the ran-
dom variable T is the sum of nmutually independent random variables T1, T2, . . . ,
Tn where 0 � Ti � 1. A random variable with a binomial distribution is just one
of many examples of such a T . Here is another.

19.4.1 A Motivating Example

Fussbook is a new social networking site oriented toward unpleasant people.
Like all major web services, Fussbook has a load balancing problem. Specif-

ically, Fussbook receives 24,000 forum posts every 10 minutes. Each post is as-
signed to one of m computers for processing, and each computer works sequen-
tially through its assigned tasks. Processing an average post takes a computer 1=4
second. Some posts, such as pointless grammar critiques and snide witticisms, are
easier. But the most protracted harangues require 1 full second.

Balancing the work load across the m computers is vital; if any computer is as-
signed more than 10 minutes of work in a 10-minute interval, then that computer is
overloaded and system performance suffers. That would be bad, because Fussbook
users are not a tolerant bunch.

An early idea was to assign each computer an alphabetic range of forum topics.
(“That oughta work!”, one programmer said.) But after the computer handling the
“privacy” and “preferred text editor” threads melted, the drawback of an ad hoc
approach was clear: there are no guarantees.

If the length of every task were known in advance, then finding a balanced dis-
tribution would be a kind of “bin packing” problem. Such problems are hard to
solve exactly, though approximation algorithms can come close. But in this case,
task lengths are not known in advance, which is typical for workload problems in
the real world.

So the load balancing problem seems sort of hopeless, because there is no data
available to guide decisions. Heck, we might as well assign tasks to computers at
random!

As it turns out, random assignment not only balances load reasonably well, but
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also permits provable performance guarantees in place of “That oughta work!” as-
sertions. In general, a randomized approach to a problem is worth considering when
a deterministic solution is hard to compute or requires unavailable information.

Some arithmetic shows that Fussbook’s traffic is sufficient to keepm D 10 com-
puters running at 100% capacity with perfect load balancing. Surely, more than 10
servers are needed to cope with random fluctuations in task length and imperfect
load balance. But how many is enough? 11? 15? 20? 100? We’ll answer that
question with a new mathematical tool.

19.4.2 The Chernoff Bound

The Chernoff4 bound is a hammer that you can use to nail a great many problems.
Roughly, the Chernoff bound says that certain random variables are very unlikely
to significantly exceed their expectation. For example, if the expected load on
a computer is just a bit below its capacity, then that computer is unlikely to be
overloaded, provided the conditions of the Chernoff bound are satisfied.

More precisely, the Chernoff Bound says that the sum of lots of little, indepen-
dent random variables is unlikely to significantly exceed the mean of the sum. The
Markov and Chebyshev bounds lead to the same kind of conclusion but typically
provide much weaker bounds. In particular, the Markov and Chebyshev bounds are
polynomial, while the Chernoff bound is exponential.

Here is the theorem. The proof will come later in Section 19.4.3.

Theorem 19.4.1 (Chernoff Bound). Let T1; : : : Tn be mutually independent ran-
dom variables such that 0 � Ti � 1 for all i . Let T D T1 C � � � C Tn. Then for all
c � 1,

PrŒT � c ExŒT �� � e�k ExŒT � (19.13)

where k D c ln.c/ � c C 1.

The Chernoff bound applies only to distributions of sums of independent random
variables that take on values in the interval Œ0; 1�. The binomial distribution is
of course such a distribution, but there are lots of other distributions because the
Chernoff bound allows the variables in the sum to have differing, arbitrary, and
even unknown distributions over the range Œ0; 1�. Furthermore, there is no direct
dependence on the number of random variables in the sum or their expectations. In
short, the Chernoff bound gives strong results for lots of problems based on little
information—no wonder it is widely used!

4Yes, this is the same Chernoff who figured out how to beat the state lottery. So you might want
to pay attention—this guy knows a thing or two.
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More Examples

The Chernoff bound is pretty easy to apply, though the details can be daunting at
first. Let’s walk through a simple example to get the hang of it.

What is the probability that the number of heads that come up in 1000 indepen-
dent tosses of a fair coin exceeds the expectation by 20% or more? Let Ti be an
indicator variable for the event that the i -th coin is heads. Then the total number of
heads is

T D T1 C � � � C T1000:

The Chernoff bound requires that the random variables Ti be mutually independent
and take on values in the range Œ0; 1�. Both conditions hold here. In fact, this
example is similar to many applications of the Chernoff bound in that every Ti is
either 0 or 1, since they’re indicators.

The goal is to bound the probability that the number of heads exceeds its expec-
tation by 20% or more; that is, to bound PrŒT � c ExŒT �� where c = 1:2. To that
end, we compute k as defined in the theorem:

k D c ln.c/ � c C 1 D 0:0187 : : : :

Plugging this value into the Chernoff bound gives:

Pr
�
T � 1:2ExŒT �

�
� e�k ExŒT �

D e�.0:0187::: /�500

< 0:0000834:

So the probability of getting 20% or more extra heads on 1000 coins is less than 1
in 10,000.5

The bound becomes much stronger as the number of coins increases, because
the expected number of heads appears in the exponent of the upper bound. For
example, the probability of getting at least 20% extra heads on a million coins is at
most

e�.0:0187::: /�500000 < e�9392

which is pretty darn small.
Alternatively, the bound also becomes stronger for larger deviations. For exam-

ple, suppose we’re interested in the odds of getting 30% or more extra heads in
1000 tosses, rather than 20%. In that case, c D 1:3 instead of 1:2. Consequently,
the parameter k rises from 0:0187 to about 0:0410, which may seem insignificant.

5Since we are analyzing a binomial distribution here, we can get somewhat better bounds using
the methods from Section 17.5, but it is much easier to use the Chernoff bounds, and they provide
results that are nearly as good.
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But because k appears in the exponent of the upper bound, the final probability
decreases from around 1 in 10,000 to about 1 in a billion!

Pick-4

Pick-4 is a lottery game where you pick a 4-digit number between 0000 and 9999.
If your number comes up in a random drawing, then you win $5,000. Your chance
of winning is 1 in 10,000. And if 10 million people play, then the expected number
of winners is 1000. The lottery operator’s nightmare is that the number of winners
is much greater; say, 2000 or more. What is the probability that will happen?

Let Ti be an indicator for the event that the i -th player wins. Then T D T1 C

� � �CTn is the total number of winners. If we assume6 that the players’ picks and the
winning number are random, independent and uniform, then the indicators Ti are
independent, as required by the Chernoff bound.

Since 2000 winners would be twice the expected number, we choose c D 2,
compute k D c ln.c/� c C 1 D 0:386 : : : , and plug these values into the Chernoff
bound:

PrŒT � 2000� D Pr
�
T � 2ExŒT �

�
� e�k ExŒT �

D e�.0:386::: /�1000

< e�386:

So there is almost no chance that the lottery operator pays out double. In fact, the
number of winners won’t even be 10% higher than expected very often. To prove
that, let c D 1:1, compute k D c ln.c/ � c C 1 D 0:00484 : : : , and plug in again:

Pr
�
T � 1:1ExŒT �

�
� e�k ExŒT �

D e�.0:00484/�1000

< 0:01:

So the Pick-4 lottery may be exciting for the players, but the lottery operator has
little doubt about the outcome!

Randomized Load Balancing

Now let’s return to Fussbook and its load balancing problem. Specifically, we need
to determine how many machines suffice to ensure that no server is overloaded;

6As we noted in Chapter 18, human choices are often not uniform and they can be highly depen-
dent. For example, lots of people will pick an important date. So the lottery folks should not get
too much comfort from the analysis that follows, unless they assign random 4-digit numbers to each
player.
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that is, assigned to do more than 10 minutes of work in a 10-minute interval.
To begin, let’s find the probability that the first server is overloaded. Let Ti be the

number of seconds that the first server spends on the i -th task. So Ti is zero if the
task is assigned to another machine, and otherwise Ti is the length of the task. Then
T D

Pn
iD1 Ti is the total length of tasks assigned to the server, where n D 24;000.

We need an upper bound on PrŒT � 600�; that is, the probability that the first server
is assigned more than 600 seconds (or, equivalently, 10 minutes) of work.

The Chernoff bound is applicable only if the Ti are mutually independent and
take on values in the range Œ0; 1�. The first condition is satisfied if we assume that
task lengths and assignments are independent. And the second condition is satisfied
because processing even the most interminable harangue takes at most 1 second.

In all, there are 24,000 tasks, each with an expected length of 1/4 second. Since
tasks are assigned to computers at random, the expected load on the first server is:

ExŒT � D
24;000 tasks � 1=4 second per task

m machines
D 6000=m seconds: (19.14)

For example, if there are m D 10 machines, then the expected load on the first
server is 600 seconds, which is 100% of its capacity.

Now we can use the Chernoff bound to upper bound the probability that the first
server is overloaded:

Pr
�
T � 600

�
D Pr

h
T �

m

10
ExŒT �

i
D Pr

�
T � c ExŒT �

�
� e�.c ln.c/�cC1/�6000=m;

where c D m=10. The first equality follows from Equation 19.14.
The probability that some server is overloaded is at mostm times the probability

that the first server is overloaded by the Sum Rule in Section 14.4.2. So

PrŒsome server is overloaded� �
mX
iD1

PrŒserver i is overloaded�

D mPrŒthe first server is overloaded�

� me�.c ln.c/�cC1/�6000=m;

where c D m=10. Some values of this upper bound are tabulated below:

m D 11 W 0:784 : : :

m D 12 W 0:000999 : : :

m D 13 W 0:0000000760 : : :
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These values suggest that a system with m D 11 machines might suffer immediate
overload,m D 12machines could fail in a few days, butm D 13 should be fine for
a century or two!

19.4.3 Proof of the Chernoff Bound

The proof of the Chernoff bound is somewhat involved. Heck, even Chernoff didn’t
come up with it! His friend, Herman Rubin, showed him the argument. Thinking
the bound not very significant, Chernoff did not credit Rubin in print. He felt pretty
bad when it became famous!7

Here is the theorem again, for reference:

Theorem 19.4.2 (Chernoff Bound). Let T1; : : : ; Tn be mutually independent ran-
dom variables such that 0 � Ti � 1 for all i . Let T D T1 C � � � C Tn. Then for all
c � 1,

PrŒT � c ExŒT �� � e�k ExŒT � (19.13)

where k D c ln.c/ � c C 1.

Proof. For clarity, we’ll go through the proof “top down”; that is, we’ll use facts
that are proved immediately afterward.

The key step is to exponentiate both sides of the inequality T � c ExŒT � and

then apply the Markov bound:

PrŒT � c ExŒT �� D PrŒcT � cc ExŒT ��

�
ExŒcT �
cc ExŒT �

(by Markov)

�
e.c�1/ExŒT �

cc ExŒT �

D e�.c ln.c/�cC1/ExŒT �:

In the third step, the numerator is rewritten using the inequality

ExŒcT � � e.c�1/ExŒT �

which is proved below in Lemma 19.4.3. The final step is simplification, using the
fact that cc is equal to ec ln.c/. �

7See “A Conversation with Herman Chernoff,” Statistical Science 1996, Vol. 11, No. 4, pp 335–
350.

25



“mcs-ftl” — 2010/9/8 — 0:40 — page 522 — #528

Chapter 19 Deviations

Algebra aside, there is a brilliant idea in this proof: in this context, exponenti-
ating somehow supercharges the Markov bound. This is not true in general! One
unfortunate side-effect is that we have to bound some nasty expectations involving
exponentials in order to complete the proof. This is done in the two lemmas below,
where variables take on values as in Theorem 19.4.1.

Lemma 19.4.3.
ExŒcT � � e.c�1/ExŒT �:

Proof.

ExŒcT � D ExŒcT1C���CTn �

D ExŒcT1 � � � cTn �

D ExŒcT1 � � � �ExŒcTn �

� e.c�1/ExŒT1� � � � e.c�1/ExŒTn�

D e.c�1/.ExŒT1�C���CExŒTn�/

D e.c�1/ExŒT1C���CTn�

D e.c�1/ExŒT �:

The first step uses the definition of T , and the second is just algebra. The third
step uses the fact that the expectation of a product of independent random variables
is the product of the expectations. This is where the requirement that the Ti be
independent is used. Then we bound each term using the inequality

ExŒcTi � � e.c�1/ExŒTi �;

which is proved in Lemma 19.4.4. The last steps are simplifications using algebra
and linearity of expectation. �

Lemma 19.4.4.
ExŒcTi � � e.c�1/ExŒTi �

Proof. All summations below range over values v taken by the random variable Ti ,
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which are all required to be in the interval Œ0; 1�.

ExŒcTi � D
X
v

cv PrŒTi D v�

�

X
v

.1C .c � 1/v/PrŒTi D v�

D

X
v

PrŒTi D v�C .c � 1/v PrŒTi D v�

D

X
v

PrŒTi D v�C
X

.c � 1/v PrŒTi D v�

D 1C .c � 1/
X
v

v PrŒTi D v�

D 1C .c � 1/ExŒTi �

� e.c�1/ExŒTi �:

The first step uses the definition of expectation. The second step relies on the
inequality cv � 1C .c�1/v, which holds for all v in Œ0; 1� and c � 1. This follows
from the general principle that a convex function, namely cv, is less than the linear
function, 1C .c � 1/v, between their points of intersection, namely v D 0 and 1.
This inequality is why the variables Ti are restricted to the interval Œ0; 1�. We then
multiply out inside the summation and split into two sums. The first sum adds the
probabilities of all possible outcomes, so it is equal to 1. After pulling the constant
c � 1 out of the second sum, we’re left with the definition of ExŒTi �. The final step
uses the standard inequality 1C z � ez , which holds for all z > 0. �

19.5 Mutually Independent Events

Suppose that we have a collection of mutually independent events A1, A2, . . . , An,
and we want to know how many of the events are likely to occur.

Let Ti be the indicator random variable for Ai and define

pi D PrŒTi D 1� D Pr
�
Ai
�

for 1 � i � n. Define
T D T1 C T2 C � � � C Tn

to be the number of events that occur.
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We know from Linearity of Expectation that

ExŒT � D ExŒT1�C ExŒT2�C � � � C ExŒTn�

D

nX
iD1

pi :

This is true even if the events are not independent.
By Theorem 19.1.9, we also know that

VarŒT � D VarŒT1�C VarŒT2�C � � � C VarŒTn�

D

nX
iD1

pi .1 � pi /;

and thus that

�T D

vuut nX
iD1

pi .1 � pi /:

This is true even if the events are only pairwise independent.
Markov’s Theorem tells us that for any c > 1,

PrŒT � c ExŒT �� �
1

c
:

Chebyshev’s Theorem gives us the stronger result that

PrŒjT � ExŒT �j � c�T � �
1

c2
:

The Chernoff Bound gives us an even stronger result; namely, that for any c > 0,

PrŒT � ExŒT � � c ExŒT �� � e�.c ln.c/�cC1/ExŒT �:

In this case, the probability of exceeding the mean by c ExŒT � decreases as an
exponentially small function of the deviation.

By considering the random variable n � T , we can also use the Chernoff Bound
to prove that the probability that T is much lower than ExŒT � is also exponentially
small.
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19.5.1 Murphy’s Law

Suppose we want to know the probability that at least 1 event occurs. If ExŒT � < 1,
then Markov’s Theorem tells us that

PrŒT � 1� � ExŒT �:

On the other hand, if ExŒT � � 1, then we can obtain a lower bound on PrŒT � 1�
using a result that we call Murphy’s Law8.

Theorem 19.5.1 (Murphy’s Law). Let A1, A2, . . . , An be mutually independent
events. Let Ti be the indicator random variable for Ai and define

T WWD T1 C T C 2C � � � C Tn

to be the number of events that occur. Then

PrŒT D 0� � e�ExŒT �:

Proof.

PrŒT D 0� D PrŒA1 ^ A2 ^ � � � ^ An�

D

nY
iD1

PrŒAi � (by independence of Ai )

D

nY
iD1

.1 � PrŒAi �/

�

nY
iD1

e�PrŒAi � (since 8x:1 � x � e�x)

D e�
Pn
iD1 PrŒAi �

D e�
Pn
iD1 ExŒTi � (since Ti is an indicator for Ai )

D e�ExŒT � (Linearity of Expectation) �

For example, given any set of mutually independent events, if you expect 10 of
them to happen, then at least one of them will happen with probability at least 1 �
e�10. The probability that none of them happen is at most e�10 < 1=22000.

So if there are a lot of independent things that can go wrong and their probabil-
ities sum to a number much greater than 1, then Theorem 19.5.1 proves that some
of them surely will go wrong.

8This is in reference and deference to the famous saying that “If something can go wrong, it will
go wrong.”
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This result can help to explain “coincidences,” “miracles,” and crazy events that
seem to have been very unlikely to happen. Such events do happen, in part, because
there are so many possible unlikely events that the sum of their probabilities is
greater than one. For example, someone does win the lottery.

In fact, if there are 100,000 random tickets in Pick-4, Theorem 19.5.1 says that
the probability that there is no winner is less than e�10 < 1=22000. More generally,
there are literally millions of one-in-a-million possible events and so some of them
will surely occur.

19.5.2 Another Magic Trick

Theorem 19.5.1 is surprisingly powerful. In fact, it is so powerful that it can enable
us to read your mind. Here’s how.

You choose a secret number n from 1 to 9. Then we randomly shuffle an ordinary
deck of 52 cards and display the cards one at a time. You watch as we reveal the
cards and when we reveal the nth card, that card becomes your secret card. If
the card is an Ace, a 10, or a face card, then you assign that card a value of 1.
Otherwise, you assign that card a value that is its number. For example, the J~ gets
assigned a value v1 D 1 and the 4} gets assigned a value v1 D 4. You do all of
this in your mind so that we can’t tell when the nth card shows up.

We keep revealing the cards, and when the (nC v1)th card shows up, that card
becomes your new secret card. You compute its value v2 using the same scheme
as for v1. For example, if your new secret card is the 10|, then v2 D 1. The
.nC v1 C v2/th card will then become your next secret card, and so forth.

We proceed in this fashion until all 52 cards have been revealed, whereupon we
read your mind by predicting your last secret card! How is this possible?

For the purposes of illustration, suppose that your secret number was n D 3 and
the deck consisted of the 11 cards:

3} 5� 2} 3| 10| Q} 3~ 7� 6| 4} 2~:

Then your secret cards would be

2}; 10|; Q}; 3~; 4}

since v1 D 2, v2 D 1, v3 D 1, v4 D 3, and v5 D 4. In this example, your last
secret card is the 4}.

To make the trick work, we follow the same rules as you, except that we start
with n D 1. With the 11-card deck shown above, our secret cards would be

3}; 3|; 3~; 4}:
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We have the same last secret card as you do! That is not a coincidence. In fact, this
is how we predict your last card—we just guess that it is the same as our last card.
And, we will be right with probability greater than 90%.

To see why the trick is likely to work, you need to notice that if we ever share a
secret card, then we will surely have the same last secret card. That’s because we
will perform exactly the same steps as the cards are revealed.

Each time we get a new secret card, there is always a chance that it was one of
your secret cards. For any given step, the chance of a match is small but we get a
lot of chances. In fact, the number of chances will typically outweigh the inverse of
the probability of a match on any given step and so, at least informally, Murphy’s
Law suggests that we are likely to eventually get a match, whereupon we can read
your mind.

The details of the proof are complicated and we will not present them here. One
of the main complications is that when you are revealing cards from a deck without
replacement, the probability of getting a match on a given step is conditional based
on the cards that have already been revealed.

19.5.3 The Subprime Mortgage Disaster

Throughout the last few chapters, we have seen many examples where powerful
conclusions can be drawn about a collection of events if the events are independent.
Of course, such conclusions are totally invalid if the events have dependencies.
Unforeseen dependencies can result in disaster in practice. For example, misguided
assumptions about the independence of loans (combined with a large amount of
greed) triggered the global financial meltdown in 2008–2009.

In what follows, we’ll explain some of what went wrong. You may notice that we
have changed the names of the key participants. That is not to protect the innocent,
since innocents are few and far between in this sordid tale. Rather, we changed the
names to protect ourselves.9 In fact, just to be on the safe side, we’ll forget about
what really happened here on Earth and instead tell you a fairy tale that took place
in a land far, far away.

The central players in our story are the major Wall Street firms, of which Golden
Scoundrels (commonly referred to as “Golden”) is the biggest and most aggressive.
Firms such as Golden ostensibly exist to make markets; they purport to create an
open and orderly market in which buyers and sellers can be brought together and
through which capitalism can flourish. It all sounds good, but the fees that can be
had from facilitating transactions in a truly open and orderly market are often just
not enough to satisfy the ever-increasing need to make more. So the employees at

9For a much more detailed accounting of these events (and one that does name names), you may
enjoy reading The Big Short by Michael Lewis.
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such firms are always trying to figure out a way to create new opportunities to make
even more money.

One day, they came up with a whopper. Suppose they bought a collection of 1000
(say) subprime mortgage loans from all around the country and packaged them up
into a single entity called a bond. A mortgage loan is a loan to a homeowner using
the house as collateral; if the homeowner stops paying on the loan (in which case
the loan is said to be in default), then the owner of the loan takes ownership of the
house. A mortgage loan is classified as subprime if the homeowner does not have
a very good credit history. Subprime loans are considered to be more risky than
prime loans since they are more likely to default. Defaults are bad for everyone;
the homeowner loses the home and the loan owner gets stuck trying to sell the
house, which can take years and often results in very high losses.

Of course, a bond consisting of 1000 subprime loans doesn’t sound very appeal-
ing to investors, so to dress it up, Golden sells the bond in tranches. The idea
behind the tranches is to provide a way to assign losses from defaults. In a typical
scenario, there would be 10 tranches and they are prioritized from 1 to 10. The
defaults are assessed against the lowest tranches first. For example, suppose that
there were 150 defaults in the collection of 1000 loans (an impossibly high number
of defaults according to Golden). Then the lowest tranche would absorb the first
100 defaults (effectively wiping them out since all 100 of “their” loans would be
in default) and the second-lowest tranche would be assigned the next 50 defaults,
(wiping out half of their investment). The remaining 8 tranches would be doing
great—none of “their” loans would be in default.

Because they are taking on more risk, the lower tranches would get more of the
interest payments. The top tranche would get the lowest rate of return and would
also be the safest. The lowest tranche would get the most interest, but also be the
most exposed.

But how much should you pay for a tranche? Suppose the probability that any
given loan defaults in a year is 1%. In other words, suppose you expect 10 of the
1000 loans to default in each year. If the defaults are independent, then we can use
the Chernoff bound to conclude that the chances of more than 100 defaults (10%)
in the 1000-loan collection is exceedingly tiny. This means that every tranche but
the lowest is essentially risk-free. That is excellent news for Golden since they can
buy 1000 cheap10 subprime loans and then sell the top 9 tranches at premium rates,
thereby making a large and instant profit on 900 of the 1000 loans. It is like turning
a bunch of junk into a bunch of gold with a little junk left over.

There remains the problem of the lowest tranche, which is expected to have
10 defaults in a pool of 100 loans for a default rate of 10%. This isn’t so good

10They are subprime loans after all.
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so the first thing to do is to give the tranche a better sounding name than “lowest
tranche.” “Mezzanine” tranche sounds much less ominous and so that is what they
used.

By the Chernoff bound, the default rate in the Mezzanine tranche is very un-
likely to be much greater than 10%, and so the risk of owning this tranche can be
addressed in part by increasing the interest payments for the tranche by 10%. But
Golden had an even better idea (whopper number two)—rather than pay the ex-
tra 10%, why not collect together a bunch of mezzanine tranches from a bunch of
bonds and then package them together into a “super bond” and then create tranches
in the super-bond? The technical name for such a super bond is a collateralized
debt obligation or CDO. This way, 90% of the mezzanine tranches instantly be-
came essentially “risk-free,” or so Golden claimed as they were marketing them.

The only problem now is getting the pension funds and other big investors to
buy the CDOs at the same price as if they were AAA-rated “risk-free” bonds. This
was a little tricky because 1) it was virtually impossible for the buyer to figure out
exactly what loans they were effectively buying since they were buying a tranche of
a collection of tranches, and 2) if you could ever figure out what it was, you would
discover that it was the junk of the junk when it comes to loans.

The solution was to enlist the help of the big bond-rating agencies: Substandard
and Prevaricators (S&P) and Mopey’s. If Golden could get AAA ratings11 on their
tranches, then the pension funds and other big investors would buy them at premium
rates.

It turned out to be easier than you might think (or hope) to convince S&P and
Mopey’s to give high ratings to the CDO tranches. After all, the ratings agencies
are trying to make money too and they make money by rating bonds. And Golden
was only going to pay them if their bonds and CDOs got good ratings. And, since
defaults were assumed to be essentially independent, there was a good argument
as to why all but the mezzanine tranche of a bond or CDO would be essentially
risk-free.12

So the stage is set for Golden to make a bundle of money. Cheap junk loans come
in the back door and exit as expensive AAA-rated bonds and CDOs out the front
door. The remaining challenge is to ramp up the new money-making machine. That

11AAA ratings are the best you can get and are supposed to imply that there is virtually no chance
of default.

12The logic gets a little fuzzy when you keep slicing and dicing the tranches—after a few iterations,
you should be able to conclude that the mezzanine tranche of a CDO is sure to have 100% defaults, but
it required effort to see what was going on under the covers and effort costs money, and so the ratings
agencies considered the risk of the mezzanine tranche of one CDO to be the same as the mezzanine
tranche of any other, even though they could have wildly different probabilities of sustaining large
numbers of defaults.
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means creating more (preferably, many, many more) junk loans to fuel the machine.
This is where Joe enters the scene. Joe is a migrant laborer earning $15,000

per year. Joe’s credit history is not great (since he has never had a loan or credit
card) but it is also not bad (since he has never missed a payment on a credit card
and never defaulted on a loan). In short, Joe is a perfect candidate for a subprime
mortgage loan on a $750,000 home.

When Loans- R-Us approaches Joe for a home loan,13 Joe dutifully explains that
while he would love to own a $750,000 home, he doesn’t have enough money to pay
for food, let alone the interest payments on the mortgage. “No problem!” replies
Loans- R-Us. It is Joe’s lucky day. The interest rates are super-low for the first
2 years and Joe can take out a second loan to cover them during that period. “What
happens after 2 years?” Joe wants to know. “No problem!” replies Loans- R-Us.
Joe can refinance—his home will surely be worth more in 2 years. Indeed, Joe can
even make money while he enjoys the comforts of his new home. If all goes well,
he can even ease off on the laborer work, and maybe even by a second home. Joe is
sold. In fact, millions of Joes are sold and, before long, the subprime loan business
is booming.

It turns out that there were a few folks out there who really did their math
homework when they were in college. They were running hedge funds and, as
the money-making machine was cranking away, they realized that a disaster was
looming. They knew that loan defaults are not independent—in fact, they are very
dependent. Once home values stop rising, or a recession hits, or it comes time for
Joe to refinance, defaults will occur at much higher rates than projected and the
CDOs and many tranches of the underlying bonds will become worthless. And
there is so much money invested in these bonds and CDOs that the economy could
be ruined.

Unfortunately, the folks who figured out what was going to happen didn’t alert
anyone. They didn’t go to the newspapers. They didn’t call the See no Evil Com-
mission. They didn’t even call 911. Instead, they worked with Golden to find a new
way to make even more money—betting against the CDO market.

If you think a stock is going to decline, you can profit from the decline by bor-
rowing the stock and selling it. After the stock declines in value, you buy it back
and return it to the person that lent it to you. Your profit is the decline in price. This
process is called shorting the stock.

So the hedge funds wanted to short the CDOs. Unfortunately, there was no
established way to borrow a tranche of a CDO. Always looking for a new way to
make money, the investment houses came up with an even bigger whopper than the

13Yes, we know it is supposed to go the other way around—Joe is supposed to approach the loan
company—but these are extraordinary times.
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CDO—they invented the credit default swap.
The idea behind the credit default swap is to provide a kind of insurance against

the event that a bond or CDO suffers a certain number of defaults. Since the hedge
funds believe that the CDOs were going to have lots of defaults, they want to buy
the insurance. The trick is to find someone dumb enough to sell the insurance.
That’s where the world’s largest insurance company, Awful Insurance Group (AIG),
enters the fray. AIG sells insurance on just about anything and they, too, are looking
for new ways to make money, so why not sell insurance on CDO defaults?

Golden has a new business! They buy the CDO insurance from AIG for an
astonishingly low price (about $2 annually for every $1000 of CDO value) and
sell it to the hedge funds for a much higher price (about $20 annually for every
$1000 of CDO value). If a CDO sustains defaults, then AIG needs to pay the value
of the CDO ($1000 in this hypothetical example) to the hedge funds who own
the insurance. Until that time, the hedge funds are paying the annual fee for the
insurance, 90% of which is pocketed by Golden. This is a great business; Golden
pockets 90% of the money and AIG takes all the risk. The only risk that Golden
has is if AIG goes down, but AIG is “too big to fail. . . . ”

Golden’s new credit default swap business is even better than the CDO business.
The only trouble now is that there are only so many Joes out there who can take out
subprime loans. This means that there is a hard limit on how many billions Golden
can make. This challenge led to whopper number four.

If the hedge funds want to buy insurance and AIG wants to sell it, who really
cares if there is only one insurance policy per loan or CDO? Indeed, why not just
sell lots of credit default swaps on the same set of junk CDOs? This way, the profits
could be unlimited! And so it went. “Synthetic” CDOs were created and soon the
“insurance” quickly turned into a very high-stakes (and very stupid, at least for
AIG) bet. The odds were weighted heavily in favor of the folks who did their math
homework (the hedge funds); the hedge funds had figured out that the failure of
the CDOs was a virtual certainty, whereas AIG believed that failure was virtually
impossible.

Of course, we all know how the story ends. The holders of the CDOs and sub-
prime debt and the sellers of insurance got wiped out, losing hundreds of billions
of dollars. Since many of these folks were deemed by the Government as “too big
to fail,” they were bailed out using nearly a trillion dollars of taxpayer money. The
executives who presided over the disaster were given huge bonuses because, well,
that’s how it works for executives in the land far, far away. The story also ends well
for the hedge funds that bought the insurance—they made many, many billions of
dollars.

So everyone involved in the disaster ends up very rich. Everyone except Joe, of
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course. Joe got kicked out of his home and lost his job in the recession.
Too bad for Joe that it isn’t just a fairy tale.
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