MITOCW | Lec 16 | MIT 6.042J Mathematics for Computer Science, Fall 2010

PROFESSOR:

The following content is provided under a Creative Commons license. Your support will help
MIT OpenCourseWare continue to offer high quality educational resources for free. To make a
donation or view additional materials from hundreds of MIT courses, visit MIT

OpenCourseWare at ocw.mit.edu.

So this week we are going to talk about counting. Tonight is a problem set eight due. For this
week, we will post a new problem set tonight as well. Counting is very important. The rest of
the semester after this week, we will actually explain probability theory. And it's all based on

counting.

So I'm going to teach you this week a whole toolkit of all kinds of ways how to count. And as
you can see, we're going to talk about a lot of different kinds of rules. A mapping rule we'll talk
about, the pigeon hole principle, another rule, the product rule and the sum rule. And these

are all ways to count one thing by counting another thing.

Actually, what we are going to talk about is how to count a difficult set the objects. And we will
map those objects to something that we can count in a much easier way. OK. So let's start

with a lot of definitions actually.

So we have to talk about sets, sequences, and permutations to start off with. So the definition

of a set is as follows. A set is actually an unordered collection of distinct elements.

So as an example, we may have, say, a set that contains the elements a, b, and c. Well, if you

reorder these elements, it doesn't really matter. It's still the same set.

We can also write it as the set ¢, a, b. On the other hand if you have a collection in which say
the elements a appears twice, well, these two are not distinct. So this is not a set. So this is not

a set.

But it is a collection. And you may call this a multiset. But we'll not go into that. So we will be

talking about sets. And your interested usually in the cardinality of a set.

So what's that? The cardinality or size is defined as follows. Cardinality is just a number of

elements that the set S really has. So it's a number of elements in S.

And how do we denote this/ This is denoted by two vertical bars around the letter that

represents the set. So we denote this as follows.

Now, when we talk about sets, we may also be interested in ordered collection of elements.

And that's what we call a sequence. So a sequence is defined as follows.

A sequence is an ordered collection of elements. And we also call these elements components
or terms. And these elements do not necessarily have to be distinct-- so not necessarily

distinct.

Now as an example, so how do we denote this? For sets, we use this type of notation like this
symbol. For sequences, we just have a very simple type of bracket, just a round bracket. So

an example could be, well, the elements a, b, and c.

The first entry or the first term of the sequence-- depending on whether you look at it from the
left or the right, it may differ-- is here a, b, and then c. Another one could be a, b, and a. And

as you can see, the element a occurs twice in the sequence.

So we're going to relate sets and sequences. And let's talk about the permutation. So a
permutation of a set is defined as follows. A permutation of a set S is actually a sequence that

contains every element in S exactly once.

So every element in S occurs exactly once. And as an example, we may look at the set that we

have described over here, the set a,b, and c. And how many permutations are there?

So the first one | may just order the elements in a, b, and c. So | have, say, the sequence a
and then b, and then c. There are many more. | can, for example, start with b, and then ¢, and

then may cycle through to a. That's another permutation of these three elements.

And | can do this once more. | can, for example, start with ¢, and then a, and then b. And it
turns out that we can do a few more. You can also start to ¢, and then b, and then a. We sort

of reversed the order that we had over here into its opposite, so first ¢, then b, then a.

And we can look at this cycle there. There's shifts. And we start with b, a, and then we rotate

through to ¢, which is what we did over here when you went from this permutation to this one.

So we have to b, a, and then c. And then we may start with a, and we have a, ¢, and b. It turns

out that this is actually all the possible permutations of this set. So there's six of these.

And in general, how many permutations are there of a set of n elements? So let's have a look

here what we did. So if | want to create a permutation of a set, | may start off by selecting for

the first term a, and b, or c.

So | have actually three choices. So the first term has three choices. The second term over
here, well, for example, suppose my first term was b. Then the second term, well, must be an

element that is different from b, as yet part of S.

So | have only two choices for the second term, either ¢ or a. So the second term has two
choices. And once | have chosen the second one, well, if I've already chosen b and c, there's

only one element left in the set over here, only a. So | have only one choice left.

So in this way, we may count the total number of permutations of this set as the number of
choices that | have for the first term times the number of choices for the second term, 3 times
2 times the number of choices for the third term, which is only one. So the third term has only

one choice.

Now in general, we can do this for any permutation. And if you want to count the number of
permutations, of a set with n elements, well, it turns out that it's equal to n times n minus 1 just
like here. We have three elements, 3 times 3 minus 1 and so on, n times n minus 1 times n

minus 2, et cetera all the way up to one.

And this is n factorial. And you've seen this already when we talked about Stirling's formula
and how to approximate this. Now, this type of reasoning we will generalize later on when we
come to the Generalized Product rule. And But this is already a first example of how we go

about this.

So permutations relates sets and sequences. So now we go on to define more special

functions. So permutations is one kind of mapping.

So let's now define functions. And then we will talk about a few different flavors of those. We

talk about surjective functions, injective functions, and bijective functions.

And the whole idea is is that if | can use a mapping from one set to another set that satisfies
some of those properties, it can say something about how their cardinalities are related. And

that's what we want. We want to count.

OK So the definition of a function is as follows. So a function f from x to y is actually a relation

between the sets X and Y. And we say that-- oh-- with the property that every single element,

every element, of X is actually related to exactly one element of Y.

And we will call x to be the domain of the function f. And Y we will call the range or image of
the function f. So let's give an example. And to see a couple of examples of, first of all, a

function and then relations to that are actually not functions.

So suppose you have a mapping from x which just contains the elements a, b, and c, just in
line with this example over here. And we have a mapping f that maps to the sety. And the y is

just the numbers 1, 2, and 3.

Well, i could map, for example, ato 1, b to 3, and ¢ to 3. Now this is a function. Because every
element of x is met to exactly one element of y. a is just mapped to 1. b is also mapped to an

element, only 3. ¢ is mapped to 3 as well.

And they usually write this as f evaluated in a is equal to 1. And f b is equal to 3. And f of c is

equal to 3 as well.

Now what is not a function-- oh, | could, for example, add another edge over here if | wanted
to. But this is not a function. Because b is now mapped to two elements, 2 and 3. And that's

not what's covered by this definition. So this is not a function.

| can also remove, say, an edge. Well, in this case, b is not mapped to anything at all. And
that's not a function either. So we really have the property for functions that there is six exactly
one outgoing arrow, if you want to think about it as being a graph, from each element in x to

exactly one elementiny.

So now we can talk about a few definitions. So we will talk about these few properties,

surjective, injective, and bijective. And then we can start to do a few interesting examples.

So a function f that goes from x to y is called surjective. if every single element of y is mapped

to at least once. So what does that mean? To at least once.

So every element of y, so say 1 for example here, is mapped to at least once. Well, to the
element 1 we have mapped a. So that's great. But for example element 2 is not mapped to at

all.

So this particular example is not surjective. But we will come to a few examples that are. So

here we have the distinction that every element of y, so every single element of y, is mapped

to at least once.

The injective is defined in a similar fashion. But now, every element of y is not mapped to at

least once, but at most once. So let's have look over here.

And that's also not true for this example actually. Because three is mapped to two times. So
it's not mapped to at most once. So this example is also not injective. Because if the function is

injective, every element of y of the range is mapped to at most once.

Bijective is if every element of y is mapped to exactly once. And we can see that the function is
bijective if and only if it is both surjective and injective. So bijective if and only if we have both

the properties surjectvie as well as injective.

So let's give a couple of examples. So as the first example, we may have the set x and y. We
have 1, 2, and 3, and set it to elements a and b over here. 1 is mapped to a, 2 is mapped to a,

and 3 is mapped to b.

And now we can see that every element in y is mapped to at least once. This one is mapped

to two times. This one is mapped to once. So this one is actually surjective.

So that's great. Another example of something this is injective is if you have, say, 1, 2, and 3,
and a, b, ¢, and d. 1 is mapped, say, to a. 2 to b, 3 to d. Well, in this case we have that it's

injective.

Because every element of y is mapped to at most once, once, once, zero times, and once. So

this one is injective. And this one is not injective, right?

Because this one is mapped to 2 times. This one is not surjective. Because this one is not

covered at all. It's only mapped to once.

OK. So let us talk again about permutations. So let me talk about permutations. We can define

a mapping using a permutation that is an example of a bijection. So let's do that.

And then we can come to the mapping rule. And we can start to do some counting. So for
example if we have a permutation, a 1 up to a n, so let this be a permutation of the set S that

contains all the elements a 1, up to a n.

So this is just one example of a permutation. And now we may define the following function.

We say that pi evaluated in a i give us output i. Actually, what | mean here is that if you take an

element in S, then this one is mapped to under this function to i if and only if a is in the i-th

position in this permutation.

So if and only if today is in i-th term in the permutation. So in this case, we know that pi is
bijective. And why is this? Well, we know from the definition of a permutation that any

permutation is a sequence in which every element of S occurs exactly once.

So that means that every position is covered exactly once by an element of S. And that is
exactly the definition over here which says that every element in the range is mapped to

exactly once by an element in a domain. So this is an example of a bijection.

OK. So now that we have defined functions and the special properties, let's talk about the
mapping rule, which we'll do over here. And now for the first time we start to talk about the
cardinalities of sets and how they're related to one another. So the mapping rule is that first of

all, if f is a function from x to y and if f is actually surjective, well, what do we know?

We actually know that the cardinality of the number of elements in the domain is at least the
number of elements in the range. And why is that? If you look at a definition of surjectivity, we
know that every element of y is covered by some element in x at least once. And all the

elements in x and mapped to exactly one elementiny.

So we know that the cardinality of x is at least y. Because every element in y is mapped by
some unique distinct element in x. And if a function f is injective, well, in that case we know that

the reverse relation holds, so inequality holds.

The cardinality of x is at most the cardinality of y. So why is that? Well, every element in an

injective function, right? Every element is mapped to at most one element.

So every element in y is mapped by at most one element in x. So we know that all the
elements in x are mapped to some element in y. But every element in y cannot map to by

more than two times by something in the domain. So we know that this inequality holds.

OK. For a bijective function, we have that both these properties hold. And we will have an
equality over here. So if this one is bijective, we have that the cardinalities are equal to one

another.

And this is also called the bijection rule. So let's give an example where we want to find out

how many ways there are to select 12 doughnuts from 5 varieties. So let's see how that would

work.

And the whole idea is that we're going to define the set that we want to count, which is all
these possible configurations of doughnuts over five varieties of flavors. And then we're going

to map these to another structure that we can understand a little be better. So let's do this.

So as an example, let x be all the ways to select, say, 12 doughnuts from 5 varieties. So let's
give an example. For example, we may have 2 doughnuts. And they are in the chocolate

flavored basket. So we have chocolate.

And suppose we have no doughnuts in the lemon filled version of a doughnut. Suppose he
have a whole bunch of doughnuts, say 6 of those, that are with sugar. We have some that are

glazed, say 2. And finally, we have just a couple of plain doughnuts.

So this would be a configuration that is in x. Because we have 1, 2, 3, 4, 5, varieties. And we
have 12 doughnuts, 2 over here, 6 here, 2, and another 2, 12 doughnuts, that are selected

from these 5 varieties.

Now, if you are going to try to represent such a configuration, that's usually how we think
about counting, then we may map this to a 01 sequence. So how do we do this? We can just

map the doughnuts two 0s, the divider between the two baskets as a 1. So thisis a 1.

Then we have no 0 between these two ones, because there are no doughnuts in the lemon
filled basket. So we have one that is the mapping from this divider field over here. We've got 6

0s.

We have another one that is this divider, two 0s, two doughnuts in the glazed version, and so
on. So what do we see here? We have a 01 sequence where we have 12 zeros and we have

1,2,3,4 1s.

And we can see that this mapping is actually bijective. Because if | have two 0s, | can map
them back to doughnuts. The 1 | can map back to the divider between two baskets. So let y be

the set of all kinds of configurations of 12, all kinds of sequences.

Oops, maybe | will not take this one out. Let's do this one. So if you are going to define y as
the set of all 16-bit sequences with exactly four 1s, then we know that by the bijection rule, we

have created this bijection over here, that the cardinalities of x and y are exactly equal.

So now we know that by the bijection rule, we have been able to count the number of
elements in x by counting something else, which is really how we proceed in these types of
proofs. So we are now able to just count these types of objects. And later on next lecture, we'll

actually figure out a formula for this one.

So this is an example of how we can use the bijection rule. Another example is one in which
we are going to count subsets. So we'll give a lot of examples through these two lectures. And
also the problem set, as you will see, will have a lot of small little parts with all kinds of

countings that you will need to do applying different rules.

So let's talk about how to count subsets of a set x. So what we want is a bijection from subsets
of a set x containing of, say, 1 up to n, so the integers 1 up to n, to n-bit sequences. We know

that we can do this if you define a bijection as follows.

So we map a subset S under a mapping f to a bit sequence, b1, b1, all the way to bn. If | add
the following relation, bi is computed as either a 1 or a 0, it's computed as a 1 ifiisin S. And

ittsa 0 ifiisnotin S.

Now, we know that this is a bijection. So if we have a bit sequence, then we can construct from
this mapping the corresponding subset. If you have a subset, we can use this mapping to

construct the corresponding bit sequence.

So how many n-bit sequences are there? Well, there are 2 to the power n n-bit sequences.
Why is that? Well, we have two choices for b1, a 0 or a 1, two choices for b2, 0 or a 1, and so

on.

So we have 2 times 2 times 2 choices over here. So we have 2 to the power n choices for a bit
sequence. So there are 2 to the power of n number of bit sequences. And this is actually

equal.

Because of this bijection rule that we have described over here, this is equal to the total
number of possible ways to select subsets of x. So this is the number of subsets of an n
element set. So this is a very nice way to demonstrate how we can use a bijection rule to count
something that appears to be much more harder to think about, to grasp. At least for me it's

harder to grasp.

So | have a subset that can be any size in a set of n elements. And now | can find this really

easy going mapping that | can show to be bijective and all of a sudden, | know how to count it.

Because | can just look at the image and count those types of objects, in this case n-bit

sequences.

| get a really easygoing number that | can compute fairly easily. And now | have counted

something much more complex. So this is how we generally will think about these things.

OK. So let's talk now about the generalized pigeon hole principal. So we have covered quite a

lot of definitions right now. So we explained the functions mapping rule.

So now we come to generalized pigeon hole principle and a few other rules. OK. So what

about a generalized pigeon hole principal? This is actually the following counting argument.

If I know that the cardinality of a set x is more than k times the cardinality of a set y, what do |
know? Well, | know that for all functions f that have domain x and range y, | know that there
must exist k plus 1 different elements of x that are mapped to the same element in y. And if we

take a specific case k=1, we will actually call this the pigeon hole principle.

And let me just demonstrate it by the famous example of pigeons. Well, if | have more pigeons
that the number of holes than they can fly into, | know for sure there exists a hole that two

pigeons will fit in. So that's where the name comes from.

So let me write it out. So an example is if | have more than n pigeons, so the pigeons from the
set x, and say they fly into n holes, and the holes is my set y, well, then | know the cardinality

of x is more than the cardinality of y. | have more pigeons than there are holes.

So | know that at least two pigeons will fly into the same hole. So for a generalized case, how
can we prove something like that? Well, we could use, for example, something like a

contradiction.

For example, suppose that for all k plus 1-- as opposed to the negation is true. So how do we

prove this usually? So assume we have this.

We want to prove this. Well, suppose that's not true. So suppose there's a mapping f. So a set
for all k plus 1 different elements of x, well, they are not mapped to the same elements in y.
But what | really know then is that every element in y is mapped to at most by k distinct

elements of x.

So that means that the total number of elements of x must be at most k times y. And that's not

true. It's larger by assumption. So it's a contradiction.

So this is a very general principle though. And it's worth writing it all out. Because this is a

famous rule that we will use in counting. And it leads to interestingly results.

OK. So let's give another example. Let's think about Boston. In Boston, we have say a half a
million non-bald people. It turns out that there are at least 3 people that have the exact same

number or hairs on the head.

So that's kind of weird. How do we know that? | cannot point out any three in Boston that have

the same number of hairs. | have no idea.

But somehow | can count and use this principle and tell you that it must be true that in Boston
with 500,000 people, there are 3 of them that are not bald. So we exclude the bald people.
Because that would be easy. They all have 0 hairs. But say non-bald people that actually have

the same number of hairs.

So how do we do that? How can we make such types of conclusions? So say Boston has
about 500,000 and non-bald people. And let's call this set x. Because we're going to use the

pigeon hole principle.

So our claim is that there exists 3 people in Boston such that they have the same number of
hairs on their head. So how do we do this? Well, we know that we may generally assume that

any person has at most 200,000 hairs on their head.

So the number of hairs on a head is at most 200,000. So how should | define my set y in order

to apply this pigeon hole principle? So what do we do?

So | want to have mapping, right, from all the people the set x to the number of hairs. So the

number of hairs on one's head is going to be the set y. And what do we know?

We know that the cardinality of y is at most 200,000. Actually, the way we defined it it's exactly
200,000. And the set x has a cardinality of about 500,000. So what do we know?

We can apply our generalized pigeon hole principle. It's very surprising, because we notice
that x is more than two times the cardinality of y. 2 times 200,000 is less than 500,000. So |
know that by this particular principle, this particular mapping must have the property, because

this holds for all mappings, that there are at least k plus 1, 2 plus 1, 3 different people in

Boston out of the set x that are mapped to the same element in y.

That means that they have the same number of hairs on their head. So this is kind of really

surprising. We can make a statement without really inspecting every single person's head.

But we can still make a statement about the fact that there are 3 different people in Boston
that have the exact same number of hairs. So this is an example of a non-constructive proof.

And | will give another one.

And it's a very important principle. There's actually a new technique that you haven't seen
before. So far we have been constructively proofing all kinds of properties using induction

mainly.

And this is what is called a non-constructive proof. Because | cannot give a specific example
that demonstrates that this claim is true. But yet, I've shown that it is true, but in a non-

constructive way without an example.

OK. So what about another one? For example, we may pick 10 arbitrary two-digit numbers. So

pick 10 arbitrary double-digit numbers.

And we can pick any sequence of numbers. I'm just picking a few. You may add a few, too. i
don't know, 2, 7, 14, | don't know, 31, 25, 60, 92, and so on. So | have 1, 2, 3,4,5,6,7, 8, |

don't know 9, and another one, say, 91 or something like that.

And so | have 10 double-digit numbers. It turns out that | can show to you that there are two
subsets that if | look at the sum of their elements, so | look at sum of the elements of the first
subset and | look at the sum of the elements of the second subset, that | can find two subsets
that have an equal sum. Now if you just look at those numbers, and I've now picked 10
arbitrary double-digit numbers, well, usually it's pretty hard to figure out whether that's really

true or not.

Maybe | have been selecting the numbers in such a way that it's easy to see. | mean, we can
still try to wrap our minds around it and try to really solve this constructively by giving an
example. It turns out that we can prove this statement. And we will use the pigeon hole

principle.

And we do not even have to actually-- oh, you have a question?

AUDIENCE:

PROFESSOR:

[INAUDIBLE].

Oh, sure. We can make it double-digits. So | could put this here. It'll be 4, 2 of | want to. But

yeah, just select something else. It doesn't really matter.

Yeah. So what we are going to show now is that through the pigeon hole principle, we can
prove that there are two subsets that have the same sum. And just by inspection it's a very

hard problem to solve. So | did not even give you an example.

But we can still show this. So how can we go ahead with this? So let's think together about this

problem.

So | want to choose two sets x and y. And somehow, | want to have a mapping, right, from any
double-digit set of numbers. Somehow | want to map that to sums. Because that's what I'm

interested in.

I'm interested in sums. And | want to show something about subsets of these double-digit

numbers. So what do | do?

| take x as the collection of subsets of these numbers. And | want to that there are at least two

subsets that map to the same sum. So let's first count how many we have here.

We already did this. We made a mapping from subsets to two binary sequences, bit

sequences. In this case, we have 10 numbers.

So we have 2 to the power 10 possible subsets. So this is equal to 1,024. Now y is going to be

the sum of a subset. So what do | know?

| know that the possible sums range from 0 all the way to, well, what's the maximum? sum that
| can have out of a subset of 10 double-digit numbers? So | can select all the 10 elements in

this set. And they are double digit.

So at most, they are 99. So | know that this set is really the set of all possible sums. Now we

know that 1,024 is more than 990. So the cardinality of x is more than the cardinality of y.

So by the pigeon hole principle, we know that there exists at least two different elements of x.
In our case, there exists two different subsets that map to the same elements in y, the same
sum. So now we have shown that even though we have not shown any particular example that

demonstrates this claim that there are two different subsets that have the same sum, we still

got a proof using counting that this is true. So this is called a non-constructive proof.

Let me write it down. And this is a great way of proofing properties. So now we can continue

with another definition where we look at another property.

Over here, we talks about surjectivity, injectivity, and bijectivity. And now we will talk about the
following property. We say that a k to 1 function is f from x to y actually maps actually k

elements of x to every element of y.

So what do we know? Well, we can have the following counting rule that we call the division
rule. And it says that if f such a type of function, so if fis k to 1, well then we know that the

cardinality of the domain is equal to k times the cardinality y.

And why is that? Well, exactly k elements of x map to each element of y. So the first element
of y, we have k elements of x mapped to it. The second element of y, k elements mapped to

that one.

So we know that the domain is exactly k times the range, k times the size of the range. Now
this division rule actually generalizes the bijection rule, which I've put over there, the bijection

rule. And why is that?

Well, that's because a function is a bijection if and only if it is actually 1 to 1. So if you replace k
by 1, we have that exactly one element of x is mapped to every element in y. And that's the

definition of a bijection.

And the bijection rule says that if you have a bijection, then the cardinality of the domain is
equal to the cardinality of the range, so for k equals 1 here. So let's give an example on how

this works. | think we can take this out actually.

So let's give an example using a chessboard, where we have 2 identical rooks and we want to
count the number of ways we can put them on the chessboard in such a way that the 2 rooks
cannot see one another, meaning that the rooks are on different rows and on different

columns. So let's give an example. So the example is like this.

So how many ways do we have to place 2 identical rooks on a chessboard in such a way that
no row or column is shared? So how can we do this? Well, for example, let's look at a

chessboard.

And suppose we have a rook over here and a rook over here. And say the first rook is on row
1 and on column 1. And the second rook is on row 2, R2, on row R2, and on the column that is

indexed by C2.

So how can we describe such configurations? Well, | could describe this by using a sequence
in which | look at the placement of the first rook, and then describe the placement of the

second rook. So | may have r1, ¢1, and then r2 and c2.

So this could be a way to describe the positioning of these rooks. And | could create a
mapping f that is doing this for me. And so if | call this an example of a valid. So let y be the set

of valid rook configuration.

And this is one example of it. So this is part of this set. And if | define x as all the sequences r1,
c1, r2, and c2 such that, well, the rook over here does not share a row with the rook that is

described by this position. So r1 is not equal to r2. And they also do not share a column.

So the first rook has column c1. The second one is on column c2. So also ¢1 and c2 should be

different. So these sequences are really placements, right?

So this describes rook 1. This describes the rook 2. And the whole combination is really a

placement.

So now | have described the function f that maps a sequence that describes the position of the
first and the second rook, maps such a sequence to an element in y, which is a valid rook
configuration. So now let's have a look at how we can apply the division rule. So is this function

bijective? Is that true?

So is it true that every-- so | have a mapping that goes from here to here. But is it true that

every valid rook configuration is mapped to exactly once? Is that true?

Is this the only sequence that will map using this function f into a valid configuration? Yup. It's

true. So you can switch rook 1 and rook 2. And it will still look the same.

The 2 rooks are identical. They look exactly the same. So we have, again, the exact same
configuration. And we can see that this particular sequence also maps to the same. It just

swap the positions. So we have r2, c2, r1, and c1 also maps under f to the same configuration.

And those are the exact 2 possibilities that can happen that map to this configuration. Every

valid configuration is mapped to exactly 2 times. So now we can use the division rule. Because

fis2to1.

So fis 2 to 1. What does that mean if you apply the division rule? It means that the cardinality
of all those sequences is equal to 2 times the cardinality of valid configurations. Or in other
words, the cardinality for all the valid configurations is the cardinality of all those possible

sequences divided by 2.

So now we can start counting x over here. So how do we do that? Well, I'm going to use
something similar as what we did when we were counting permutations. And we'll generalize it

in a moment.

So how do we go about this? Well, let's have a look. If | have r1, ¢1, and r2, and c2, so this is a

sequence. So how many choices do | have?

Well, a chessboard has 8 rows. So | can choose 8 possible rows for the first rook. It also has 8

columns. So | have 8 possible choices for the column.

But what about the second rook? Well, the second rook can be on any row except the one that
I've already selected for the first. So this 8 minus 1, we have 7 possible choices to select the

row for the second rook.

It must be different from the one that was already selected. And | have 7 possible choices. And
similarly for this particular column as well, the column has to be different. So how many

choices do | have?

Well, it's not 8. It's one less, because I've already selected the one for the first rook. So | have

7 choices. So the cardinality of x is actually equal to 8 times 8 times 7 times 7.

So it's 8 times 7 squared divided by 2. So now we have to counted, by using the division rule,

we have to the divide this by 2. We have counted the total number of valid configurations.

So now we are going to generalize this principle that we have talked about here. And we will

do that over here | think. Yup. And that's the generalized product rule.

So the generalized product rule is as follows. It's essentially saying that if we have a set of
sequences of length k, then how can we count those? Well, if we know the following

properties-- well, let me first write out the generalized product rule is as follows.

Let S be a set of length k sequences. Then | know that if there are n1 possible first entries and
if I know that once I've selected my first entry, there are n2 possible second entries for each
first entry. And if | continue like this, my choice for the third term in the sequence is I've always

n3 possible choices given my selection for the first 2 entries.

So if | have that property that continues in that way, so let me write it out. So we have n3
possible third entries for each combination in this case of first together with second entries.
And if | continue this all the way to nk, so nk possible kth entries for each combination of all the
previous entries, then | know that the set S can be counted as, well, I've n1 possible choices

for the first entry.

Once I've chosen to fix that one, | have n2 possible choices for the second, then n3 possible
choice for the third. And | go all the way to nk. Well, let's first talk about it from the perspective

of the chess problem here.

| got 8 possible choices for r1. Given r1, | don't care. | still have 8 possible choices for the
column here. So | have 8 choices here. But for the third one, once | have selected r1 and c1, |

only have 7 choices left for r2 and 7 choices left for c2.

So that's an example where we use this particular generalized product rule. Also when we
were counting the number of permutations, we were saying we can fix the first entry of a
permutation in n ways if | have a permutation for n elements. And then | have the second
entry, the second term, of a permutation has only n minus 1 choices. Because I've already

chosen one.

And the next one has n minus 3 choices. Because I've already selected 2 of them. So | have
only n minus 2 choices left. Then | have n minus 3 choices. Because I've already selected 3

and so on.

And | get n factorial. So that's the same kind of principle that we have here. So let me give an

example where we can see how this works.

So what do we do? In this example, we want to count the number of committees. So it's the

exact same kind of principle that we are going to talk about.

So we are going to count the number of communities described by sequence X, y, z, where x
the first one is, say, the leader of the committee. The second one indicates the secretary. The

third one is some consultant. So they're all different. They have all different roles.

And such a committee is elected from n members. And in how many ways can | do this? Well,

I have n ways to choose my first term in the sequence. | have n ways to choose the leader.

So there's n ways to choose x. How many ways do | have to choose y? Well, if I've chosen
already a leader, | need to choose someone else. So | have n minus 1 members left, n minus

1 ways to choose y.

I'm just not allowed to choose x. And then | will have n minus 2 ways to choose a z except x
and y. And so for each x, | have only n minus 1 ways to choose y. For each x and y, | have

only n minus 2 ways to choose z.

So if I multiply all this together, | get n times n minus 1 times n minus 2 to choose all these
committee-- this is the total number of possible committees that | can select from an n
member set of people. So let's go to a little bit of a different example that uses the same

principle. OK. Let's make some space.

In the second problem, | will define to you a defective dollar bill. It's not really defective. But it's

a property that we will assign to dollar bill.

And you can check for yourself whether you have one in your wallet. So let's define a defective
dollar bill to have the property that if you look at the 8-bit serial number, some of the digits

appear more than once. So some digit appears more than once in the 8-bit serial number.

So you can check our own wallet and check for your $1 bills and check whether you have a
defective dollar. This seems to be a pretty specific and rare property, right? Well, check you

dollar bills.

You'll figure out that you have probably a defective dollar bill in your wallet. So that's kind of
weird. But it seems this property. If you look at that, it seems to be something that is maybe a

little bit more common than we thought it is.

It seems to be so special. So let's do a counting argument and find out what's happening here.
So let's look at a fraction of the non-defective. So we are counting the opposite, the non-

defective bills.

Well, that's the number of non-defective serial numbers divided by the total number of serial

numbers. And let's call these small x and y and count these.

So let's see. So first of all, let's count y. Well, that's easy, | have 8 digits in my serial number.
So | have 10 choices for the first digit, 10 choices for the second one, and so on. In total, |

have 10 times 10 times 10 to the power 8 choices.

What about x? Well, I'm using, again, our generalized product rule over here. Well, if I'm going
to have a non-defective dollar bill, then all the digits in the 8 digit serial number have to be

different.

So for the first digit, | have 10 choices. Now that I've selected my first digit, | have 9 digits for
my second choice for my second digit in the serial number. Then | have 8 possible choices, 7,
because I've already selected 3. And | cannot choose those anymore-- times 6 times 5 times 4

times 3.

And now | have chosen an 8 digit serial number in which all the digits are different. OK So how
many are these? Well, this is actually equal to 10 factorial divided by 2 factorial. And it turns

out to be something like 1,814,400. possible choices.

So now let's look at the fraction. It turns out if you divide this by this, you get a really very small

fraction. This is actually equal to 1.8144% So a very small fraction is non-defective.

So almost all the dollars are sort of defective. It simply means that they have this special

property that some digit occurs more than once. So it's kind of interesting.

So we can already see that by counting, it's sometimes a little bit counterintuitive. Because if |
would see this particular property, | would in first instance think that it's a very special property.

But that's not true. It's very common it turns out.

Now a special case of the generalized product rule is the product rule. And this is defined as
follows. We are going to first of all define a product over sets. The definition is that the product

of a set A1 with A2 up to An is actually equal to the set of sequences.

So the first entry is selected from the first set, the second entry is selected from the second
set, and so on. And now the product rule tells us by just applying that reasoning over here that
the cardinality of the product of all those sets is actually equal to the cardinality of the first set
multiplied by the cardinality of the second set and so on up to the cardinality of the last set.
Because we have this number of choices for the very first element over here, this number of

choices for the second one, and so on.

And we apply that rule, and we see that this is the result. Now when we use this, in specific to
count all the n-bit sequences, we have exactly 2 choices for the first bit. We have to set 0,1 in

our example times the set 0, 1 over here and so on.

And that's how we derived that we have 2 times 2, 2 the power n choices for an n-bit

sequence. So now we come to the sum rule. And we will give an example for that.

So the sum rule states that if you look at sets, then we may be able to count their union. And

we will consider a very specific case. In the next lecture, we will talk about the general case.

So the sum rule is the following counting mechanism. If the sets A1 up to An are all disjoint, so
they are disjoint sets, then we know that if | try to count the union of all those set, it's going to

be the sum of the separate cardinalities. So let me just write it out actually.

So it's the cardinality of A1 plus A2 all the way to An. Why is this? Well, all the sets are disjoint.
So there are no intersections between sets that contain elements. All the intersections are

empty.

So counting the union is really counting each separate set. And that's why we have the sum.
And in the next lecture, we will talk about inclusion, exclusion rule. And then we will take into

account that we have intersections that are not empty.

But let's give now an example where we count the number of passwords with certain
properties. And we will apply all these different rules together. And that's the type of problems

that you would like to be able to solve.

So in our last example here, we have that passwords have the following property. They are 6
to 8 symbols. So that's property 1. We have that the very first symbol must be special in the

sense that it is a letter.

And this can an upper or lowercase. And say that the other symbols are actually letters or

digits. So let's count the total number of possible passwords.

We're going to use the sum rule. So let's define what kinds of sets we are taking the symbols
from. So the first set is for the first symbol, which we call f or first. We have all the letters a, b, ¢

in lowercase, and then all of them in uppercase. And in total, we have 52 elements in this set.

For the second symbol, or the other symbols, we have all these letters, but also all the digits,

0, 1, up to 9. And this set actually has cardinality 62. We added 10 digits.

So let's talk about-- actually, we like to use this in the sum rule as well. So how do we count?
What kind of possibilities do we really have? So let's describe the set of passwords explicitly in

a formula. So let p be the set of possible passwords.

And this one is actually equal to-- well, | need to choose a first symbol. And then | need to
choose a second symbol, and a third, and a fourth, and a fifth, and a sixth. That's one

possibility. | use 6 symbols.

| can also use 7 or 8 symbols. But this is one of them. We also denote this as S to the power 5.

That's an equivalent notation.

The other possibilities for passwords are that we first choose an entry from f, a letter. And then

we will need to choose another 6 symbols. In total, we have 7.

And we have another possibility where we choose a first symbol, and then we choose 7 other

symbols. So has 8 symbols. This has in total 7. This one has in total 6 symbols.

So this covers all the possible passwords. So let's count them. We know that these sets are all

the different. They are distinct.

These are sequences that have 6 entries, 7, and 8 entries. So if you look at the cardinality of
P, it's actually equal to the sum by the sum rule that we just described over there, is equal to
the very first one, f times S to the power 5 plus the cardinality of the product of f with S to the

power 6. And we have f times S to the power 7.

So this is simply by application of the sum rule. And now we can apply the product rule very
simply, which is this one. So that's equal to the cardinality of f times the cardinality of S to the

power 5. And then we have the same rule applied to this one.

It's the commonality of f times the cardinality of S to the power 6. And then we have the

cardinality of f times the cardinality of S to the power 7. Now, we simply plug-in these numbers.

And then you will have the total number of passwords that you can select from. It turns out to
be about 1.8 times 10 to the power 14. So here we have applied both to sum rule and the

product rule.

So in general, you will see that you have to apply multiple rules together in order to find an

answer to your counting problem. And you'll see that on a problem set. And we will give a few

more examples in next lecture.

And we will start talking about the generalization of the sum room called inclusion exclusion.
And we will give you another type of proof technique called combinatorial proofs. All right.

Good luck with the problems.

