
“mcs” — 2015/5/18 — 1:43 — page 130 — #138

5.4 State Machines

State machines are a simple, abstract model of step-by-step processes. Since com-
puter programs can be understood as defining step-by-step computational processes,
it’s not surprising that state machines come up regularly in computer science. They
also come up in many other settings such as designing digital circuits and mod-
eling probabilistic processes. This section introduces Floyd’s Invariant Principle
which is a version of induction tailored specifically for proving properties of state
machines.

One of the most important uses of induction in computer science involves prov-
ing one or more desirable properties continues to hold at every step in a process.
A property that is preserved through a series of operations or steps is known as a
preserved invariant . Examples of desirable invariants include properties such as
a variable never exceeding a certain value, the altitude of a plane never dropping
below 1,000 feet without the wingflaps being deployed, and the temperature of a
nuclear reactor never exceeding the threshold for a meltdown.

5.4.1 States and Transitions
Formally, a state machine is nothing more than a binary relation on a set, except
that the elements of the set are called “states,” the relation is called the transition
relation, and an arrow in the graph of the transition relation is called a transition.
A transition from state q to state r will be written q �! r . The transition relation

“mcs” — 2015/5/18 — 1:43 — page 131 — #139

5.4. State Machines 131

start
state

0 1 2 99 overflow

Figure 5.7 State transitions for the 99-bounded counter.

is also called the state graph of the machine. A state machine also comes equipped
with a designated start state.

A simple example is a bounded counter, which counts from 0 to 99 and overflows
at 100. This state machine is pictured in Figure 5.7, with states pictured as circles,
transitions by arrows, and with start state 0 indicated by the double circle. To be
precise, what the picture tells us is that this bounded counter machine has

states WWD f0; 1; : : : ; 99; overflowg;
start state WWD 0;

transitions WWD fn �! nC 1 j 0 n < 99g
[f99 �! overflow; overflow �! overflowg:

This machine isn’t much use once it overflows, since it has no way to get out of its
overflow state.

State machines for digital circuits and string pattern matching algorithms, for in-
stance, usually have only a finite number of states. Machines that model continuing
computations typically have an infinite number of states. For example, instead of
the 99-bounded counter, we could easily define an “unbounded” counter that just
keeps counting up without overflowing. The unbounded counter has an infinite
state set, the nonnegative integers, which makes its state diagram harder to draw.

State machines are often defined with labels on states and/or transitions to indi-
cate such things as input or output values, costs, capacities, or probabilities. Our
state machines don’t include any such labels because they aren’t needed for our
purposes. We do name states, as in Figure 5.7, so we can talk about them, but the
names aren’t part of the state machine.

5.4.2 Invariant for a Diagonally-Moving Robot
Suppose we have a robot that starts at the origin and moves on an infinite 2-
dimensional integer grid. The state of the robot at any time can be specified by
the integer coordinates .x; y/ of the robot’s current position. So the start state
is .0; 0/. At each step, the robot may move to a diagonally adjacent grid point, as
illustrated in Figure 5.8.

�

“mcs” — 2015/5/18 — 1:43 — page 132 — #140

132 Chapter 5 Induction

Figure 5.8 The Diagonally Moving Robot.

To be precise, the robot’s transitions are:

f.m; n/ �! .m˙ 1; n˙ 1/ j m; n 2 Zg:
For example, after the first step, the robot could be in states .1; 1/, .1;�1/, .�1; 1/,
or .�1;�1/. After two steps, there are 9 possible states for the robot, includ-
ing .0; 0/. The question is, can the robot ever reach position .1; 0/?

If you play around with the robot a bit, you’ll probably notice that the robot can
only reach positions .m; n/ for which mC n is even, which of course means that it
can’t reach .1; 0/. This follows because the evenness of the sum of the coordinates
is preserved by transitions.

This once, let’s go through this preserved-property argument, carefully highlight-
ing where induction comes in. Specifically, define the even-sum property of states
to be:

Even-sum..m; n// WWD ŒmC n is evenç:

Lemma 5.4.1. For any transition, q �! r , of the diagonally-moving robot, if
Even-sum(q), then Even-sum(r).

This lemma follows immediately from the definition of the robot’s transitions:
.m; n/ �! .m˙ 1; n˙ 1/. After a transition, the sum of coordinates changes by

“mcs” — 2015/5/18 — 1:43 — page 133 — #141

5.4. State Machines 133

goal

Figure 5.9 Can the Robot get to .1; 0/?

“mcs” — 2015/5/18 — 1:43 — page 134 — #142

134 Chapter 5 Induction

.˙1/C .˙1/, that is, by 0, 2, or -2. Of course, adding 0, 2 or -2 to an even number
gives an even number. So by a trivial induction on the number of transitions, we
can prove:

Theorem 5.4.2. The sum of the coordinates of any state reachable by the diagonally-
moving robot is even.

Proof. The proof is induction on the number of transitions the robot has made. The
induction hypothesis is

P.n/ WWD if q is a state reachable in n transitions, then Even-sum(q):

Base case: P.0/ is true since the only state reachable in 0 transitions is the start
state .0; 0/, and 0C 0 is even.

Inductive step: Assume that P.n/ is true, and let r be any state reachable in nC 1

transitions. We need to prove that Even-sum(r) holds.
Since r is reachable in nC 1 transitions, there must be a state, q, reachable in n

transitions such that q �! r . Since P.n/ is assumed to be true, Even-sum(q) holds,
and so by Lemma 5.4.1, Even-sum(r) also holds. This proves that P.n/ IMPLIES
P.nC 1/ as required, completing the proof of the inductive step.

We conclude by induction that for all n 0, if q is reachable in n transitions, then
Even-sum(q). This implies that every reachable state has the Even-sum property.

⌅

Corollary 5.4.3. The robot can never reach position .1; 0/.

Proof. By Theorem 5.4.2, we know the robot can only reach positions with coor-
dinates that sum to an even number, and thus it cannot reach position .1; 0/. ⌅

5.4.3 The Invariant Principle
Using the Even-sum invariant to understand the diagonally-moving robot is a sim-
ple example of a basic proof method called The Invariant Principle. The Principle
summarizes how induction on the number of steps to reach a state applies to invari-
ants.

A state machine execution describes a possible sequence of steps a machine
might take.

Definition 5.4.4. An execution of the state machine is a (possibly infinite) sequence
of states with the property that

✏ it begins with the start state, and

�

�

“mcs” — 2015/5/18 — 1:43 — page 135 — #143

5.4. State Machines 135

✏ if q and r are consecutive states in the sequence, then q �! r .

A state is called reachable if it appears in some execution.

Definition 5.4.5. A preserved invariant of a state machine is a predicate, P , on
states, such that whenever P.q/ is true of a state, q, and q �! r for some state, r ,
then P.r/ holds.

The Invariant Principle

If a preserved invariant of a state machine is true for the start state,
then it is true for all reachable states.

The Invariant Principle is nothing more than the Induction Principle reformulated
in a convenient form for state machines. Showing that a predicate is true in the start
state is the base case of the induction, and showing that a predicate is a preserved
invariant corresponds to the inductive step.5

5Preserved invariants are commonly just called “invariants” in the literature on program correct-
ness, but we decided to throw in the extra adjective to avoid confusion with other definitions. For
example, other texts (as well as another subject at MIT) use “invariant” to mean “predicate true of
all reachable states.” Let’s call this definition “invariant-2.” Now invariant-2 seems like a reason-
able definition, since unreachable states by definition don’t matter, and all we want to show is that
a desired property is invariant-2. But this confuses the objective of demonstrating that a property is
invariant-2 with the method of finding a preserved invariant to show that it is invariant-2.

�

“mcs” — 2015/5/18 — 1:43 — page 136 — #144

136 Chapter 5 Induction

Robert W. Floyd

The Invariant Principle was formulated by Robert W. Floyd at Carnegie Tech
in 1967. (Carnegie Tech was renamed Carnegie-Mellon University the following
year.) Floyd was already famous for work on the formal grammars that trans-
formed the field of programming language parsing; that was how he got to be
a professor even though he never got a Ph.D. (He had beenadmitted to a PhD
program as a teenage prodigy, but flunked out and never went back.)

In that same year, Albert R. Meyer was appointed Assistant Professor in the
Carnegie Tech Computer Science Department, where he first met Floyd. Floyd
and Meyer were the only theoreticians in the department, and they were both de-
lighted to talk about their shared interests. After just a few conversations, Floyd’s
new junior colleague decided that Floyd was the smartest person he had ever met.

Naturally, one of the first things Floyd wanted to tell Meyer about was his new,
as yet unpublished, Invariant Principle. Floyd explained the result to Meyer, and
Meyer wondered (privately) how someone as brilliant as Floyd could be excited
by such a trivial observation. Floyd had to show Meyer a bunch of examples be-
fore Meyer understood Floyd’s excitement —not at the truth of the utterly obvious
Invariant Principle, but rather at the insight that such a simple method could be so
widely and easily applied in verifying programs.

Floyd left for Stanford the following year. He won the Turing award—the
“Nobel prize” of computer science—in the late 1970’s, in recognition of his work
on grammars and on the foundations of program verification. He remained at
Stanford from 1968 until his death in September, 2001. You can learn more about
Floyd’s life and work by reading the eulogy at

http://oldwww.acm.org/pubs/membernet/stories/floyd.pdf

written by his closest colleague, Don Knuth.

http://dl.acm.org/citation.cfm?id=954488
http://oldwww.acm.org/pubs/membernet/stories/floyd.pdf

“mcs” — 2015/5/18 — 1:43 — page 137 — #145

5.4. State Machines 137

5.4.4 The Die Hard Example
The movie Die Hard 3: With a Vengeance includes an amusing example of a state
machine. The lead characters played by Samuel L. Jackson and Bruce Willis have
to disarm a bomb planted by the diabolical Simon Gruber:

Simon: On the fountain, there should be 2 jugs, do you see them? A 5-
gallon and a 3-gallon. Fill one of the jugs with exactly 4 gallons of water
and place it on the scale and the timer will stop. You must be precise;
one ounce more or less will result in detonation. If you’re still alive in 5
minutes, we’ll speak.

Bruce: Wait, wait a second. I don’t get it. Do you get it?

Samuel: No.

Bruce: Get the jugs. Obviously, we can’t fill the 3-gallon jug with 4 gal-
lons of water.

Samuel: Obviously.

Bruce: All right. I know, here we go. We fill the 3-gallon jug exactly to
the top, right?

Samuel: Uh-huh.

Bruce: Okay, now we pour this 3 gallons into the 5-gallon jug, giving us
exactly 3 gallons in the 5-gallon jug, right?

Samuel: Right, then what?

Bruce: All right. We take the 3-gallon jug and fill it a third of the way...

Samuel: No! He said, “Be precise.” Exactly 4 gallons.

Bruce: Sh - -. Every cop within 50 miles is running his a - - off and I’m
out here playing kids games in the park.

Samuel: Hey, you want to focus on the problem at hand?

Fortunately, they find a solution in the nick of time. You can work out how.

The Die Hard 3 State Machine

The jug-filling scenario can be modeled with a state machine that keeps track of
the amount, b, of water in the big jug, and the amount, l , in the little jug. With the
3 and 5 gallon water jugs, the states formally will be pairs, .b; l/, of real numbers

“mcs” — 2015/5/18 — 1:43 — page 138 — #146

138 Chapter 5 Induction

such that 0 b 5; 0 l 3. (We can prove that the reachable values of b and
l will be nonnegative integers, but we won’t assume this.) The start state is .0; 0/,
since both jugs start empty.

Since the amount of water in the jug must be known exactly, we will only con-
sider moves in which a jug gets completely filled or completely emptied. There are
several kinds of transitions:

1. Fill the little jug: .b; l/ �! .b; 3/ for l < 3.

2. Fill the big jug: .b; l/ �! .5; l/ for b < 5.

3. Empty the little jug: .b; l/ �! .b; 0/ for l > 0.

4. Empty the big jug: .b; l/ �! .0; l/ for b > 0.

5. Pour from the little jug into
(
the big jug: for l > 0,

.b C l; 0/ if b C l 5,
.b; l/ �!

.5; l � .5 � b// otherwise.

6. Pour from big jug into little
(
jug: for b > 0,

.0; b
; l/

C l/ if b C l 3,
.b �!

.b � .3 � l/; 3/ otherwise.

Note that in contrast to the 99-counter state machine, there is more than one pos-
sible transition out of states in the Die Hard machine. Machines like the 99-counter
with at most one transition out of each state are called deterministic. The Die Hard
machine is nondeterministic because some states have transitions to several differ-
ent states.

The Die Hard 3 bomb gets disarmed successfully because the state (4,3) is reach-
able.

Die Hard Once and For All

The Die Hard series is getting tired, so we propose a final Die Hard Once and For
All. Here, Simon’s brother returns to avenge him, posing the same challenge, but
with the 5 gallon jug replaced by a 9 gallon one. The state machine has the same
specification as the Die Hard 3 version, except all occurrences of “5” are replaced
by “9.”

Now, reaching any state of the form .4; l/ is impossible. We prove this using
the Invariant Principle. Specifically, we define the preserved invariant predicate,
P..b; l//, to be that b and l are nonnegative integer multiples of 3.

� � � �

�

�

“mcs” — 2015/5/18 — 1:43 — page 139 — #147

5.4. State Machines 139

To prove that P is a preserved invariant of Die-Hard-Once-and-For-All machine,
we assume P.q/ holds for some state q WWD .b; l/ and that q �! r . We have to
show that P.r/ holds. The proof divides into cases, according to which transition
rule is used.

One case is a “fill the little jug” transition. This means r D .b; 3/. But P.q/

implies that b is an integer multiple of 3, and of course 3 is an integer multiple of
3, so P.r/ still holds.

Another case is a “pour from big jug into little jug” transition. For the subcase
when there isn’t enough room in the little jug to hold all the water, that is, when
b C l > 3, we have r D .b � .3� l/; 3/. But P.q/ implies that b and l are integer
multiples of 3, which means b � .3 � l/ is too, so in this case too, P.r/ holds.

We won’t bother to crank out the remaining cases, which can all be checked
just as easily. Now by the Invariant Principle, we conclude that every reachable
state satisifies P . But since no state of the form .4; l/ satisifies P , we have proved
rigorously that Bruce dies once and for all!

By the way, notice that the state (1,0), which satisfies NOT.P /, has a transition
to (0,0), which satisfies P . So the negation of a preserved invariant may not be a
preserved invariant.

5.4.5 Fast Exponentiation
Partial Correctness & Termination

Floyd distinguished two required properties to verify a program. The first property
is called partial correctness; this is the property that the final results, if any, of the
process must satisfy system requirements.

You might suppose that if a result was only partially correct, then it might also
be partially incorrect, but that’s not what Floyd meant. The word “partial” comes
from viewing a process that might not terminate as computing a partial relation.
Partial correctness means that when there is a result, it is correct, but the process
might not always produce a result, perhaps because it gets stuck in a loop.

The second correctness property, called termination, is that the process does
always produce some final value.

Partial correctness can commonly be proved using the Invariant Principle. Termi-
nation can commonly be proved using the Well Ordering Principle. We’ll illustrate
this by verifying a Fast Exponentiation procedure.

Exponentiating

The most straightforward way to compute the bth power of a number, a, is to
multiply a by itself b � 1 times. But the solution can be found in considerably

“mcs” — 2015/5/18 — 1:43 — page 140 — #148

140 Chapter 5 Induction

fewer multiplications by using a technique called Fast Exponentiation. The regis-
ter machine program below defines the fast exponentiation algorithm. The letters
x; y; z; r denote registers that hold numbers. An assignment statement has the form
“z WD a” and has the effect of setting the number in register z to be the number a.

A Fast Exponentiation Program

Given inputs a 2 R; b 2 N, initialize registers x; y; z to a; 1; b respectively, and
repeat the following sequence of steps until termination:

✏ if z D 0 return y and terminate

✏ r WD remainder.z; 2/

✏ z WD quotient.z; 2/

✏ if r D 1, then y WD xy

✏ x WD x2

We claim this program always terminates and leaves y D ab .
To begin, we’ll model the behavior of the program with a state machine:

1. states WWD R R N,

2. start state WWD .a; 1; b/,

3. transitions are defined by the rule
(

.x2; y; quotient.z; 2// if z is nonzero and even;
.x; y; z/ �!

.x2; xy; quotient.z; 2// if z is nonzero and odd:

The preserved invariant, P..x; y; z//, will be

z 2 N AND yxz D ab: (5.4)

To prove that P is preserved, assume P..x; y; z// holds and that .x; y; z/ �!
.xt ; yt ; zt /. We must prove that P..xt ; yt ; zt // holds, that is,

zt 2 N zAND ytx
t

t D ab: (5.5)

Since there is a transition from .x; y; z/, we have z ¤ 0, and since z 2 N
by (5.4), we can consider just two cases:

�

�

�

�

�

� �

“mcs” — 2015/5/18 — 1:43 — page 141 — #149

5.4. State Machines 141

If z is even, then we have that xt D x2; yt D y; zt D z=2. Therefore, zt 2 N
and

zytx
t

t D y.x2/z=2

D yx2�z=2

D yxz

D ab (by (5.4))

If z is odd, then we have that xt D x2; yt D xy; zt D .z � 1/=2. Therefore,
zt 2 N and

zytx
t

t D xy.x2/.z�1/=2

D yx1C2�.z�1/=2

D yx1C.z�1/

D yxz

D ab (by (5.4))

So in both cases, (5.5) holds, proving that P is a preserved invariant.
Now it’s easy to prove partial correctness: if the Fast Exponentiation program

terminates, it does so with ab in register y. This works because 1 � ab D ab , which
means that the start state, .a; 1; b/, satisifies P . By the Invariant Principle, P holds
for all reachable states. But the program only stops when z D 0. If a terminated
state .x; y; 0/ is reachable, then y D yx0 D ab as required.

Ok, it’s partially correct, but what’s fast about it? The answer is that the number
of multiplications it performs to compute ab is roughly the length of the binary
representation of b. That is, the Fast Exponentiation program uses roughly log 6b

multiplications, compared to the naive approach of multiplying by a a total of b�1

times.
More precisely, it requires at most 2.dlog be C 1/ multiplications for the Fast

Exponentiation algorithm to compute ab for b > 1. The reason is that the number
in register z is initially b, and gets at least halved with each transition. So it can’t
be halved more than dlog beC 1 times before hitting zero and causing the program
to terminate. Since each of the transitions involves at most two multiplications, the
total number of multiplications until z D 0 is at most 2.dlog beC 1/ for b > 0 (see
Problem 5.36).

6As usual in computer science, log b means the base two logarithm, log2 b. We use, ln b for the
natural logarithm loge b, and otherwise write the logarithm base explicitly, as in log10 b.

“mcs” — 2015/5/18 — 1:43 — page 142 — #150

142 Chapter 5 Induction

5.4.6 Derived Variables
The preceding termination proof involved finding a nonnegative integer-valued
measure to assign to states. We might call this measure the “size” of the state.
We then showed that the size of a state decreased with every state transition. By
the Well Ordering Principle, the size can’t decrease indefinitely, so when a mini-
mum size state is reached, there can’t be any transitions possible: the process has
terminated.

More generally, the technique of assigning values to states—not necessarily non-
negative integers and not necessarily decreasing under transitions—is often useful
in the analysis of algorithms. Potential functions play a similar role in physics. In
the context of computational processes, such value assignments for states are called
derived variables.

For example, for the Die Hard machines we could have introduced a derived
variable, f W states ! R, for the amount of water in both buckets, by setting
f ..a; b// WWDaC b. Similarly, in the robot problem, the position of the robot along
the x-axis would be given by the derived variable x-coord, where x-coord..i; j //WWD i .

There are a few standard properties of derived variables that are handy in ana-
lyzing state machines.

Definition 5.4.6. A derived variable f W states! R is strictly decreasing iff

q �! q0 IMPLIES f .q0/ < f .q/:

It is weakly decreasing iff

q �! q0 IMPLIES f .q0/ f .q/:

Strictly increasing and weakly increasing derived variables are defined similarly.
7

We confirmed termination of the Fast Exponentiation procedure by noticing that
the derived variable z was nonnegative-integer-valued and strictly decreasing. We
can summarize this approach to proving termination as follows:

Theorem 5.4.7. If f is a strictly decreasing N-valued derived variable of a state
machine, then the length of any execution starting at state q is at most f .q/.

Of course, we could prove Theorem 5.4.7 by induction on the value of f .q/, but
think about what it says: “If you start counting down at some nonnegative integer
f .q/, then you can’t count down more than f .q/ times.” Put this way, it’s obvious.

7Weakly increasing variables are often also called nondecreasing. We will avoid this terminology
to prevent confusion between nondecreasing variables and variables with the much weaker property
of not being a decreasing variable.

�

“mcs” — 2015/5/18 — 1:43 — page 143 — #151

5.4. State Machines 143

Theorem 5.4.7 generalizes straightforwardly to derived variables taking values
in a well ordered set (Section 2.4.

Theorem 5.4.8. If there exists a strictly decreasing derived variable whose range
is a well ordered set, then every execution terminates.

Theorem 5.4.8 follows immediately from the observation that a set of numbers
is well ordered iff it has no infinite decreasing sequences (Problem 2.17).

Note that the existence of a weakly decreasing derived variable does not guaran-
tee that every execution terminates. An infinite execution could proceed through
states in which a weakly decreasing variable remained constant.

A Southeast Jumping Robot (Optional)

Here’s a contrived, simple example of proving termination based on a variable that
is strictly decreasing over a well ordered set. Let’s think about a robot positioned
at an integer lattice-point in the Northeast quadrant of the plane, that is, at .x; y/ 2
N2.

At every second when it is away from the origin, .0; 0/, the robot must make a
move, which may be

✏ a unit distance West when it is not at the boundary of the Northeast quadrant
(that is, .x; y/ �! .x � 1; y/ for x > 0), or

✏ a unit distance South combined with an arbitrary jump East (that is, .x; y/ �!
.z; y � 1/ for z x).

Claim 5.4.9. The robot will always get stuck at the origin.

If we think of the robot as a nondeterministic state machine, then Claim 5.4.9 is
a termination assertion. The Claim may seem obvious, but it really has a different
character than termination based on nonnegative integer-valued variables. That’s
because, even knowing that the robot is at position .0; 1/, for example, there is no
way to bound the time it takes for the robot to get stuck. It can delay getting stuck
for as many seconds as it wants by making its next move to a distant point in the
Far East. This rules out proving termination using Theorem 5.4.7.

So does Claim 5.4.9 still seem obvious?
Well it is if you see the trick. Define a derived variable, v, mapping robot states

to the numbers in the well ordered set NC F of Lemma 2.4.5. In particular, define
v W N2 ! NC F as follows

x
v.x; y/ WWD y C :

x C 1

�

�

�

“mcs” — 2015/5/18 — 1:43 — page 144 — #152

144 Chapter 5 Induction

Figure 5.10 Gehry’s new tile.

Now it’s easy to check that if .x; y/ �! .x0; y0/ is a legitimate robot move, then
v..x0; y0// < v..x; y//. In particular, v is a strictly decreasing derived variable, so
Theorem 5.4.8 implies that the robot always get stuck—even though we can’t say
how many moves it will take until it does.

MIT OpenCourseWare
https://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science
Spring 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

