
Chapter 2 

Codes 

In the previous chapter we examined the fundamental unit of information, the bit, and its various abstract 
representations: the Boolean bit (with its associated Boolean algebra and realization in combinational logic 
circuits), the control bit, the quantum bit, and the classical bit. 

A single bit is useful if exactly two answers to a question are possible. Examples include the result of a 
coin toss (heads or tails), the gender of a person (male or female), the verdict of a jury (guilty or not guilty), 
and the truth of an assertion (true or false). Most situations in life are more complicated. This chapter 
concerns ways in which complex objects can be represented not by a single bit, but by arrays of bits. 

It is convenient to focus on a very simple model of a system, shown in Figure 2.1, in which the input is 
one of a predetermined set of objects, or “symbols,” the identity of the particular symbol chosen is encoded 
in an array of bits, these bits are transmitted through space or time, and then are decoded at a later time 
or in a different place to determine which symbol was originally chosen. In later chapters we will augment 
this model to deal with issues of robustness and efficiency. 

C
od

er

C
ha

nn
el

D
ec

od
er

 

� � � � 
(Arrays of Bits) (Arrays of Bits) 

Input 

(Symbols) 

Output 

(Symbols) 

Figure 2.1: Simple model of a communication system 

In this chapter we will look into several aspects of the design of codes, and show some examples in which 
these aspects were either done well or not so well. Individual sections will describe codes that illustrate the 
important points. Some objects for which codes may be needed include: 

• Letters: BCD, EBCDIC, ASCII, Unicode, Morse Code 

• Integers: Binary, Gray, 2’s complement 

9 



10 2.1 Symbol Space Size 

• Numbers: Floating-Point 

Proteins: Genetic Code • 

• Telephones: NANP, International codes 

• Hosts: Ethernet, IP Addresses, Domain names 

• Images: TIFF, GIF, and JPEG 

Audio: MP3 • 

Video: MPEG • 

2.1 Symbol Space Size 

The first question to address is the number of symbols that need to be encoded. This is called the symbol 
space size. We will consider symbol spaces of different sizes: 

1• 

2• 

• Integral power of 2 

Finite • 

• Infinite, Countable 

• Infinite, Uncountable 

If the number of symbols is 2, then the selection can be encoded in a single bit. If the number of possible 
symbols is 4, 8, 16, 32, 64, or another integral power of 2, then the selection may be coded in the number 
of bits equal to the logarithm, base 2, of the symbol space size. Thus 2 bits can designate the suit (clubs, 
diamonds, hearts, or spades) of a playing card, and 5 bits can encode the selection of one student in a class of 
32. As a special case, if there is only one symbol, no bits are required to specify it. A dreidel is a four-sided 
toy marked with Hebrew letters, and spun like a top in a children’s game, especially at Hanukkah. The 
result of each spin could be encoded in 2 bits. 

If the number of symbols is finite but not an integral power of 2, then the number of bits that would work 
for the next higher integral power of 2 can be used to encode the selection, but there will be some unused 
bit patterns. Examples include the 10 digits, the six faces of a cubic die, the 13 denominations of a playing 
card, and the 26 letters of the English alphabet. In each case, there is spare capacity (6 unused patterns in 
the 4-bit representation of digits, 2 unused patterns in the 3-bit representation of a die, etc.) What to do 
with this spare capacity is an important design issue that will be discussed in the next section. 

If the number of symbols is infinite but countable (able to be put into a one-to-one relation with the 
integers) then a bit string of a given length can only denote a finite number of items from this infinite set. 
Thus, a 4-bit code for non-negative integers might designate integers from 0 through 15, but would not be 
able to handle integers outside this range. If, as a result of some computation, it were necessary to represent 
larger numbers, then this “overflow” condition would have to be handled in some way. 

If the number of symbols is infinite and uncountable (such as the value of a physical quantity like voltage 
or acoustic pressure) then some technique of “discretization” must be used to replace possible values by a 
finite number of selected values that are approximately the same. For example, if the numbers between 0 
and 1 were the symbols and if 2 bits were available for the coded representation, one approach might be 
to approximate all numbers between 0 and 0.25 by the number 0.125, all numbers between 0.25 and 0.5 by 
0.375, and so on. Whether such an approximation is adequate depends on how the decoded data is used. 



11 2.2 Use of Spare Capacity 

The approximation is not reversible, in that there is no decoder which will recover the original symbol given 
just the code for the approximate value. However, if the number of bits available is large enough, then for 
many purposes a decoder could provide a number that is close enough. Floating-point representation of real 
numbers in computers is based on this philosophy. 

2.2 Use of Spare Capacity 

In many situations there are some unused code patterns, because the number of symbols is not an integral 
power of 2. There are many strategies to deal with this. Here are some: 

• Ignore 

• Map to other values 

• Reserve for future expansion 

Use for control codes • 

Use for common abbreviations • 

These approaches will be illustrated with examples of common codes. 

2.2.1 Binary Coded Decimal (BCD) 

A common way to represent the digits 0 - 9 is by the ten four-bit patterns shown in Table 2.1. There are 
six bit patterns (for example 1010) that are not used, and the question is what to do with them. Here are a 
few ideas that come to mind. 

First, the unused bit patterns might simply be ignored. If a decoder encounters one, perhaps as a result 
of an error in transmission or an error in encoding, it might return nothing, or might signal an output error. 
Second, the unused patterns might be mapped into legal values. For example, the unused patterns might all 
be converted to 9, under the theory that they represent 10, 11, 12, 13, 14, or 15, and the closest digit is 9. 
Or they might be decoded as 2, 3, 4, 5, 6, or 7, by setting the initial bit to 0, under the theory that the first 
bit might have gotten corrupted. Neither of these theories is particularly appealing, but in the design of a 
system using BCD, some such action must be provided. 

Digit Code 
0 0 0 0 0 
1 0 0 0 1 
2 0 0 1 0 
3 0 0 1 1 
4 0 1 0 0 
5 0 1 0 1 
6 0 1 1 0 
7 0 1 1 1 
8 1 0 0 0 
9 1 0 0 1 

Table 2.1: Binary Coded Decimal 



12 2.2 Use of Spare Capacity 

2.2.2 Genetic Code 

Another example of mapping unused patterns into legal values is provided by the Genetic Code, described 
in Section 2.7. A protein consists of a long sequence of amino acids, of 20 different types, each with between 
10 and 27 atoms. Living organisms have millions of different proteins, and it is believed that all cell activity 
involves proteins. Proteins have to be made as part of the life process, yet it would be difficult to imagine 
millions of special-purpose chemical manufacturing units, one for each type of protein. Instead, a general-
purpose mechanism assembles the proteins, guided by a description (think of it as a blueprint) that is 
contained in DNA (deoxyribonucleic acid) and RNA (ribonucleic acid) molecules. Both DNA and RNA are 
linear chains of small “nucleotides;” a DNA molecule might consist of more than a hundred million such 
nucleotides. In DNA there are four types of nucleotides, each consisting of some common structure and one 
of four different bases, named Adenine, Cytosine, Guanine, and Thymine. In RNA the structure is similar 
except that Thymine is replaced by Uracil. 

The Genetic Code is a description of how a sequence of nucleotides specifies an amino acid. Given that 
relationship, an entire protein can be specified by a linear sequence of nucleotides. Note that the coded 
description of a protein is not by itself any smaller or simpler than the protein itself; in fact, the number of 
atoms needed to specify a protein is larger than the number of atoms in the protein itself. The value of the 
standardized representation is that it allows the same assembly apparatus to fabricate different proteins at 
different times. 

Since there are four different nucleotides, one of them can specify at most four different amino acids. A 
sequence of two can specify 16 different amino acids. But this is not enough – there are 20 different amino 
acids used in proteins – so a sequence of three is needed. Such a sequence is called a codon. There are 64 
different codons, more than enough to specify 20 amino acids. The spare capacity is used to provide more 
than one combination for most amino acids, thereby providing a degree of robustness. For example, the 
amino acid Alanine has 4 codes including all that start with GC; thus the third nucleotide can be ignored, so 
a mutation which changed it would not impair any biological functions. In fact, eight of the 20 amino acids 
have this same property that the third nucleotide is a “don’t care.” (It happens that the third nucleotide is 
more likely to be corrupted during transcription than the other two, due to an effect that has been called 
“wobble.”) 

An examination of the Genetic Code reveals that three codons (UAA, UAG, and UGA) do not specify 
any amino acid. These three signify the end of the protein. Such a “stop code” is necessary because different 
proteins are of different length. The codon AUG specifies the amino acid Methionine and also signifies the 
beginning of a protein; all protein chains begin with Methionine. Many man-made codes have this property, 
that some bit sequences designate data but a few are reserved for control information. 

2.2.3 Telephone Area Codes 

The third way in which spare capacity can be used is by reserving it for future expansion. When AT&T 
started using telephone Area Codes for the United States and Canada in 1947 (they were made available for 
public use in 1951), the codes contained three digits, with three restrictions. 

•	 The first digit could not be 0 or 1, to avoid conflicts with 0 connecting to the operator, and 1 being 
an unintended effect of a faulty sticky rotary dial or a temporary circuit break of unknown cause (or 
today a signal that the person dialing acknowledges that the call may be a toll call) 

•	 The middle digit could only be a 0 or 1 (0 for states and provinces with only one Area Code, and 1 for 
states and provinces with more than one). This restriction allowed an Area Code to be distinguished 
from an exchange (an exchange, the equipment that switched up to 10,000 telephone numbers, was 
denoted at that time by the first two letters of a word and one number; today exchanges are denoted 
by three digits). 

•	 The last two digits could not be the same (numbers of the form abb are more easily remembered 
and therefore more valuable)—thus x11 dialing sequences such as 911 (emergency), 411 (directory 



13 2.2 Use of Spare Capacity 

assistance), and 611 (repair service) for local services were protected. This also permitted the later 
adoption of 500 (follow-me), 600 (Canadian wireless), 700 (interconnect services), 800 (toll-free calls), 
and 900 (added-value information services). 

As a result only 144 Area Codes were possible. Initially 86 were used and were assigned so that numbers 
more rapidly dialed on rotary dials went to districts with larger incoming traffic (e.g., 212 for Manhattan). 
The remaining 58 codes were reserved for later assignment. 

This pool of 58 new Area Codes was sufficient for more than four decades. Finally, when more than 144 
Area Codes were needed, new Area Codes were created by relaxing the restriction that the middle digit be 
only 0 or 1. On January 15, 1995, the first Area Code with a middle digit other than 0 or 1 was put into 
service, in Alabama. The present restrictions on area codes are that the first digit cannot be 0 or 1, the 
middle digit cannot be 9, and the last two digits cannot be the same. As of the beginning of 2000, 108 new 
Area Codes had been started, this great demand due in part to expanded use of the telephone networks 
for other services such as fax and cell phones, in part to political pressure from jurisdictions such as the 
Caribbean islands that wanted their own area codes, and in part by the large number of new telephone 
companies offering service and therefore needing at least one entire exchange in every rate billing district. 
Some people believe that the North American Numbering Plan (NANP) will run out of area codes before 
2025, and there are various proposals for how to deal with that. 

The transition in 1995 went remarkably smoothly, considering that every telephone exchange in North 
America required upgrading, both in revised software and, in some cases, new hardware. By and large the 
public was not aware of the significance of the change. This was a result of the generally high quality of 
North American telephone service, and the fact that the industry was tightly coordinated. The only glitches 
seem to have been that a few PBX (Private Branch eXchanges) designed by independent suppliers were not 
upgraded in time. Since 1995 the telecommunications industry in North America has changed greatly: it 
now has less central control, much more competition, and a much wider variety of services offered. Future 
changes in the numbering plan will surely result in much greater turmoil and inconvenience to the public. 

2.2.4 IP Addresses 

Another example of the need to reserve capacity for future use is afforded by IP (Internet Protocol) 
addresses, which is described in Section 2.8. These are (in version 4) of the form x.x.x.x where each x is 
a number between 0 and 255, inclusive. Thus each Internet address can be coded in a total of 32 bits. IP 
addresses are assigned by the Internet Assigned Numbers Authority, http://www.iana.org/, (IANA). 

The explosion of interest in the Internet has created a large demand for IP addresses, and the organizations 
that participated in the development of the Internet, who had been assigned large blocks of numbers, began 
to feel as though they were hoarding a valuable resource. Among these organizations are AT&T, BBN, IBM, 
Xerox, HP, DEC, Apple, MIT, Ford, Stanford, BNR, Prudential, duPont, Merck, the U.S. Postal Service, and 
several U.S. DoD agencies (see Section 2.8). The U.S. electric power industry, in the form of EPRI (Electric 
Power Research Institute), requested a large number of Internet addresses, for every billable household or 
office suite, for eventual use by remote meter reading equipment. The Internet Engineering Task Force, 
http://www.ietf.org/, (IETF) came to realize that Internet addresses were needed on a much more pervasive 
and finer scale than had been originally envisioned—for example, there will be a need for addresses for 
appliances such as refrigerators, ovens, telephones, and furnaces when these are Internet-enabled, and there 
will be several needed within every automobile and truck, perhaps one for each microprocessor and sensor 
on the vehicle. The result has been the development of version 6, IPv6, in which each address is still of the 
form x.x.x.x, but each x is now a 32-bit number between 0 and 4,294,967,295 inclusive. Thus new Internet 
addresses will require 128 bits. Existing addresses will not have to change, but all the network equipment 
will have to change to accommodate the longer addresses. The new allocations include large blocks which 
are reserved for future expansion, and it is said (humorously) that there are blocks of addresses set aside for 
use by the other planets. The size of the address space is large enough to accommodate a unique hardware 
identifier for each personal computer, and some privacy advocates have pointed out that IPv6 may make 
anonymous Web surfing impossible. 

http://www.iana.org/
http://www.ietf.org/


14 2.3 Extension of Codes 

2.2.5 ASCII 

A fourth use for spare capacity in codes is to use some of it for denoting formatting or control operations. 
Many codes incorporate code patterns that are not data but control codes. For example, the Genetic Code 
includes three patterns of the 64 as stop codes to terminate the production of the protein. 

The most commonly used code for text characters, ASCII (American Standard Code for Information 
Interchange, described in Section 2.5) reserves 33 of its 128 codes explicitly for control, and only 95 for 
characters. These 95 include the 26 upper-case and 26 lower-case letters of the English alphabet, the 10 
digits, space, and 32 punctuation marks. 

2.3 Extension of Codes 

Many codes are designed by humans. Sometimes codes are amazingly robust, simple, easy to work with, 
and extendable. Sometimes they are fragile, arcane, complex, and defy even the simplest generalization. 
Often a simple, practical code is developed for representing a small number of items, and its success draws 
attention and people start to use it outside its original context, to represent a larger class of objects, for 
purposes not originally envisioned. 

Codes that are generalized often carry with them unintended biases from their original context. Some­
times the results are merely amusing, but in other cases such biases make the codes difficult to work with. 

An example of a reasonably benign bias is the fact that ASCII has two characters that were originally 
intended to be ignored. ASCII started as the 7-bit pattern of holes on paper tape, used to transfer information 
to and from teletype machines. The tape originally had no holes (except a series of small holes, always present, 
to align and feed the tape), and travelled through a punch. The tape could be punched either from a received 
transmission, or by a human typing on a keyboard. The debris from this punching operation was known as 
“chad.” The leader (the first part of the tape) was unpunched, and therefore represented, in effect, a series 
of the character 0000000 of undetermined length (0 is represented as no hole). Of course when the tape was 
read the leader should be ignored, so by convention the character 0000000 was called NUL and was ignored. 
Later, when ASCII was used in computers, different systems treated NULs differently. Unix treats NUL 
as the end of a word in some circumstances, and this use interferes with applications in which characters 
are given a numerical interpretation. The other ASCII code which was originally intended to be ignored is 
DEL, 1111111. This convention was helpful to typists who could “erase” an error by backing up the tape 
and punching out every hole. In modern contexts DEL is often treated as a destructive backspace, but some 
text editors in the past have used DEL as a forward delete character, and sometimes it is simply ignored. 

A much more serious bias carried by ASCII is the use of two characters, CR (carriage return) and LF 
(line feed), to move to a new printing line. The physical mechanism in teletype machines had separate 
hardware to move the paper (on a continuous roll) up, and reposition the printing element to the left 
margin. The engineers who designed the code that evolved into ASCII surely felt they were doing a good 
thing by permitting these operations to be called for separately. They could not have imagined the grief 
they have given to later generations as ASCII was adapted to situations with different hardware and no 
need to move the point of printing as called for by CR or LF separately. Different computing systems do 
things differently—Unix uses LF for a new line and ignores CR, Macintoshes (at least prior to OS X) use 
CR and ignore LF, and DOS/Windows requires both. This incompatibility is a continuing, serious source of 
frustration and errors. For example, in the transfer of files using FTP (File Transfer Protocol) CR and LF 
should be converted to suit the target platform for text files, but not for binary files. Some FTP programs 
infer the file type (text or binary) from the file extension (the part of the file name following the last period). 
Others look inside the file and count the number of “funny characters.” Others rely on human input. These 
techniques usually work but not always. File extension conventions are not universally followed. Humans 
make errors. What if part of a file is text and part binary? 



15 2.4 Fixed-Length and Variable-Length Codes 

2.4 Fixed-Length and Variable-Length Codes 

A decision that must be made very early in the design of a code is whether to represent all symbols 
with codes of the same number of bits (fixed length) or to let some symbols use shorter codes than others 
(variable length). There are advantages to both schemes. 

Fixed-length codes are usually easier to deal with because both the coder and decoder know in advance 
how many bits are involved, and it is only a matter of setting or reading the values. With variable-length 
codes, the decoder needs a way to determine when the code for one symbol ends and the next one begins. 

Fixed-length codes can be supported by parallel transmission, in which the bits are communicated from 
the coder to the decoder simultaneously, for example by using multiple wires to carry the voltages. This 
approach should be contrasted with serial transport of the coded information, in which a single wire sends a 
stream of bits and the decoder must decide when the bits for one symbol end and those for the next symbol 
start. If a decoder gets mixed up, or looks at a stream of bits after it has started, it might not know. This 
is referred to as a “framing error.” To eliminate framing errors, stop bits are often sent between symbols; 
typically ASCII sent over serial lines has 1 or 2 stop bits, normally given the value 0. Thus if a decoder is out 
of step, it will eventually find a 1 in what it assumed should be a stop bit, and it can try to resynchronize. 
Although in theory framing errors could persist for long periods, in practice use of stop bits works well. 

2.4.1 Morse Code 

An example of a variable-length code is Morse Code, developed for the telegraph. The codes for letters, 
digits, and punctuation are sequences of dots and dashes with short-length intervals between them. See 
Section 2.9. 

The decoder tells the end of the code for a single character by noting the length of time before the next 
dot or dash. The intra-character separation is the length of a dot, and the inter-character separation is 
longer, the length of a dash. The inter-word separation is even longer. 



16 2.5 Detail: ASCII 

2.5 Detail: ASCII 

ASCII, which stands for “The American Standard Code for Information Interchange,” was introduced by 
the American National Standards Institute (ANSI) in 1963. It is the most commonly used character code. 

ASCII is a seven-bit code, representing the 33 control characters and 95 printing characters (including 
space) in Table 2.2. The control characters are used to signal special conditions, as described in Table 2.3. 

Control Characters Digits Uppercase Lowercase 

HEX DEC CHR Ctrl 

00 0 NUL ^@ 
01 1 SOH ^A 
02 2 STX ^B 
03 3 ETX ^C 
04 4 EOT ^D 
05 5 ENQ ^E 
06 6 ACK ^F 
07 7 BEL ^G 
08 8 BS ^H 
09 9 HT ^I 
0A 10 LF ^J 
0B 11 VT ^K 
0C 12 FF ^L 
0D 13 CR ^M 
0E 14 SO ^N 
0F 15 SI ^O 
10 16 DLE ^P 
11 17 DC1 ^Q 
12 18 DC2 ^R 
13 19 DC3 ^S 
14 20 DC4 ^T 
15 21 NAK ^U 
16 22 SYN ^V 
17 23 ETB ^W 
18 24 CAN ^X 
19 25 EM ^Y 
1A 26 SUB ^Z 
1B 27 ESC ^[ 
1C 28 FS ^\ 
1D 29 GS ^] 
1E 30 RS ^^ 
1F 31 US ^_ 

HEX DEC CHR 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
2A 
2B 
2C 
2D 
2E 
2F 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
3A 
3B 
3C 
3D 
3E 
3F 

32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 

SP 
! 
" 
# 
$ 
% 
& 
’ 
( 
) 
* 
+ 
, 
-
. 
/ 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
: 
; 
¡ 
= 
> 
? 

HEX DEC CHR 

40 64 @ 
41 65 A 
42 66 B 
43 67 C 
44 68 D 
45 69 E 
46 70 F 
47 71 G 
48 72 H 
49 73 I 
4A 74 J 
4B 75 K 
4C 76 L 
4D 77 M 
4E 78 N 
4F 79 O 
50 80 P 
51 81 Q 
52 82 R 
53 83 S 
54 84 T 
55 85 U 
56 86 V 
57 87 W 
58 88 X 
59 89 Y 
5A 90 Z 
5B 91 [ 
5C 92 \ 
5D 93 ] 
5E 94 ^ 
5F 95 

HEX DEC CHR 

60 96 ‘ 
61 97 a 
62 98 b 
63 99 c 
64 100 d 
65 101 e 
66 102 f 
67 103 g 
68 104 h 
69 105 i 
6A 106 j 
6B 107 k 
6C 108 l 
6D 109 m 
6E 110 n 
6F 111 o 
70 112 p 
71 113 q 
72 114 r 
73 115 s 
74 116 t 
75 117 u 
76 118 v 
77 119 w 
78 120 x 
79 121 y 
7A 122 z 
7B 123 {
7C 124 — 
7D 125 }
7E 126 ~ 
7F 127 DEL 

Table 2.2: ASCII Character Set 

On to 8 Bits 

In an 8-bit context, ASCII characters follow a leading 0, and thus may be thought of as the “bottom 
half” of a larger code. The 128 characters represented by codes between HEX 80 and HEX FF (sometimes 
incorrectly called “high ASCII” of “extended ASCII”) have been defined differently in different contexts. 
On many operating systems they included the accented Western European letters and various additional 



17 2.5 Detail: ASCII 

HEX DEC CHR Ctrl 

00 0 NUL ^@ 
01 1 SOH ^A 
02 2 STX ^B 
03 3 ETX ^C 
04 4 EOT ^D 
05 5 ENQ ^E 
06 6 ACK ^F 
07 7 BEL ^G 
08 8 BS ^H 
09 9 HT ^I 
0A 10 LF ^J 
0B 11 VT ^K 
0C 12 FF ^L 
0D 13 CR ^M 
0E 14 SO ^N 
0F 15 SI ^O 
10 16 DLE ^P 
11 17 DC1 ^Q 
12 18 DC2 ^R 
13 19 DC3 ^S 
14 20 DC4 ^T 
15 21 NAK ^U 
16 22 SYN ^V 
17 23 ETB ^W 
18 24 CAN ^X 
19 25 EM ^Y 
1A 26 SUB ^Z 
1B 27 ESC ^[ 
1C 28 FS ^\ 
1D 29 GS ^] 
1E 30 RS ^^ 
1F 31 US ^_ 
20 32 SP 
7F 127 DEL 

Meaning 

NULl blank leader on paper tape; generally ignored 
Start Of Heading 
Start of TeXt 
End of TeXt; matches STX 
End Of Transmission 
ENQuiry 
ACKnowledge; affirmative response to ENQ 
BELl; audible signal, a bell on early machines 
BackSpace; nondestructive, ignored at left margin 
Horizontal Tab 
Line Feed; paper up or print head down; new line on Unix 
Vertical Tab 
Form Feed; start new page 
Carriage Return; print head to left margin; new line on Macs 
Shift Out; start use of alternate character set 
Shift In; resume use of default character set 
Data Link Escape; changes meaning of next character 
Device Control 1; if flow control used, XON, OK to send 
Device Control 2 
Device Control 3; if flow control used, XOFF, stop sending 
Device Control 4 
Negative AcKnowledge; response to ENQ 
SYNchronous idle 
End of Transmission Block 
CANcel; disregard previous block 
End of Medium 
SUBstitute 
ESCape; changes meaning of next character 
File Separator; coarsest scale 
Group Separator; coarse scale 
Record Separator; fine scale 
Unit Separator; finest scale 
SPace; usuallly not considered a control character 
DELete; orginally ignored; sometimes destructive backspace 

Table 2.3: ASCII control characters 



18 2.5 Detail: ASCII 

punctuation marks. On IBM PCs they included line-drawing characters. Macs used (and still use) a different 
encoding. 

Fortunately, people now appreciate the need for interoperability of computer platforms, so more universal 
standards are coming into favor. The most common code in use for Web pages is ISO-8859-1 (ISO-Latin) 
which uses the 96 codes between HEX A0 and HEX FF for various accented letters and punctuation of 
Western European languages, and a few other symbols. The 32 characters between HEX 80 and HEX 9F 
are reserved as control characters in ISO-8859-1. 

Nature abhors a vacuum. Most people don’t want 32 more control characters (indeed, of the 33 control 
characters in 7-bit ASCII, only about ten are regularly used in text). Consequently there has been no end of 
ideas for using HEX 80 to HEX 9F. The most widely used convention is Microsoft’s Windows Code Page 1252 
(Latin I) which is the same as ISO-8859-1 (ISO-Latin) except that 27 of the 32 control codes are assigned to 
printed characters, one of which is HEX 80, the Euro currency character. Not all platforms and operating 
systems recognize CP-1252, so documents, and in particular Web pages, require special attention. 

Beyond 8 Bits 

To represent Asian languages, many more characters are needed. There is currently active development of 
appropriate standards, and it is generally felt that the total number of characters that need to be represented 
is less that 65,536. This is fortunate because that many different characters could be represented in 16 bits, 
or 2 bytes. In order to stay within this number, the written versions of some of the Chinese dialects must 
share symbols that look alike. 

The strongest candidate for a 2-byte standard character code today is known as Unicode. 

References 

There are many Web pages that give the ASCII chart, with extensions to all the world’s languages. 
Among the more useful: 

• Jim Price, with PC and Windows 8-bit charts, and several further links 
http://www.jimprice.com/jim-asc.shtml 

• A Brief History of Character Codes, with a discussion of extension to Asian languages 
http://tronweb.super-nova.co.jp/characcodehist.html 

• Unicode home page 
http://www.unicode.org/ 

• Windows CP-1252 standard, definitive 
http://www.microsoft.com/globaldev/reference/sbcs/1252.htm 

• CP-1252 compared to: 

– Unicode 
http://ftp.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1252.TXT 

– Unicode/HTML 
http://www.alanwood.net/demos/ansi.html 

– ISO-8859-1/Mac OS 
http://www.jwz.org/doc/charsets.html 

http://www.jimprice.com/jim-asc.shtml
http://tronweb.super-nova.co.jp/characcodehist.html
http://www.unicode.org/
http://www.microsoft.com/globaldev/reference/sbcs/1252.htm
http://ftp.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP1252.TXT
http://www.alanwood.net/demos/ansi.html
http://www.jwz.org/doc/charsets.html


19 2.6 Detail: Integer Codes 

2.6 Detail: Integer Codes 

There are many ways to represent integers as bit patterns. All suffer from an inability to represent 
arbitrarily large integers in a fixed number of bits. A computation which produces an out-of-range result is 
said to overflow. 

The most commonly used representations are binary code for unsigned integers (e.g., memory addresses), 
2’s complement for signed integers (e.g., ordinary arithmetic), and binary gray code for instruments measur­
ing changing quantities. 

The following table gives five examples of 4-bit integer codes. The MSB (most significant bit) is on the 
left and the LSB (least significant bit) on the right. 

Unsigned Integers Signed Integers � �� � � �� � 

Binary Code Binary Gray Code 2’s Complement Sign/Magnitude 1’s Complement 
Range � [0, 15] [0, 15] [-8, 7] [-7,7] [-7,7] 

-8 1 0 0 0 
-7 1 0 0 1 1 1 1 1 1 0 0 0 
-6 1 0 1 0 1 1 1 0 1 0 0 1 
-5 1 0 1 1 1 1 0 1 1 0 1 0 
-4 1 1 0 0 1 1 0 0 1 0 1 1 
-3 1 1 0 1 1 0 1 1 1 1 0 0 
-2 1 1 1 0 1 0 1 0 1 1 0 1 
-1 1 1 1 1 1 0 0 1 1 1 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 
2 0 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 
3 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 1 1 
4 0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 
5 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 
6 0 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 
7 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 0 1 1 1 
8 1 0 0 0 1 1 0 0 
9 1 0 0 1 1 1 0 1 
10 1 0 1 0 1 1 1 1 
11 1 0 1 1 1 1 1 0 
12 1 1 0 0 1 0 1 0 
13 1 1 0 1 1 0 1 1 
14 1 1 1 0 1 0 0 1 
15 1 1 1 1 1 0 0 0 

Table 2.4: Four-bit integer codes 

Binary Code 

This code is for nonnegative integers. For code of length n, the 2n patterns represent integers 0 through 
2n − 1. The LSB (least significant bit) is 0 for even and 1 for odd integers. 



20 2.6 Detail: Integer Codes 

Binary Gray Code 

This code is for nonnegative integers. For code of length n, the 2n patterns represent integers 0 through 
2n −1. The two bit patterns of adjacent integers differ in exactly one bit. This property makes the code useful 
for sensors where the integer being encoded might change while a measurement is in progress. The following 
anonymous tribute appeared in Martin Gardner’s column “Mathematical Games” in Scientific American, 
August, 1972, but actually was known much earlier. 

The Binary Gray Code is fun, 
for with it STRANGE THINGS can be done. . . 

Fifteen, as you know, 
is one oh oh oh, 

while ten is one one one one. 

2’s Complement 

This code is for integers, both positive and negative. For a code of length n, the 2n patterns represent 
integers −2n−1 through 2n−1 − 1. The LSB (least significant bit) is 0 for even and 1 for odd integers. Where 
they overlap, this code is the same as binary code. This code is widely used. 

Sign/Magnitude 

This code is for integers, both positive and negative. For code of length n, the 2n patterns represent 
integers −(2n−1 − 1) through 2n−1 − 1. The MSB (most significant bit) is 0 for positive and 1 for negative 
integers; the other bits carry the magnitude. Where they overlap, this code is the same as binary code. 
While conceptually simple, this code is awkward in practice. Its separate representations for +0 and -0 are 
not generally useful. 

1’s Complement 

This code is for integers, both positive and negative. For code of length n, the 2n patterns represent 
integers −(2n−1 − 1) through 2n−1 − 1. The MSB is 0 for positive integers; negative integers are formed by 
complementing each bit of the corresponding positive integer. Where they overlap, this code is the same as 
binary code. This code is awkward and rarely used today. Its separate representations for +0 and -0 are not 
generally useful. 



21 2.7 Detail: The Genetic Code∗ 

2.7 Detail: The Genetic Code∗ 

The basic building block of your body is a cell. Two or more groups of cells form tissues, such as bone 
or muscle; tissues organize to form organs, such as the heart or brain; organs form organ systems, such as 
the circulatory system or nervous system; the organ systems together form you, the organism. Cells can be 
classified as either eukaryote or prokaryote cells – with or without a nucleus, respectively. The cells that 
make up your body and those of all animals, plants, and fungi are eukaryotic. Prokaryotes are bacteria and 
cyanobacteria. 

The nucleus forms a separate compartment from the rest of the cell body; this compartment serves 
as the central storage center for all the hereditary information of the eukaryote cells. All of the genetic 
information that forms the book of life is stored on individual chromosomes found within the nucleus. In 
healthy humans there are 23 pairs of chromosomes (46 total). Each one of the chromosomes contains one 
threadlike deoxyribonucleic acid (DNA) molecule. Genes are the functional regions along these DNA strands, 
and are the fundamental physical units that carry hereditary information from one generation to the next. 
In the prokaryotes the chromosomes are free floating in the cell body since there is no nucleus. 

Figure 2.2: Location of DNA inside of a Cell 

The DNA molecules are composed of two interconnected chains of nucleotides that form one DNA strand. 
Each nucleotide is composed of a sugar, phosphate, and one of four bases. The bases are adenine, guanine, cy­
tosine, and thymine. For convenience each nucleotide is referenced by its base; instead of saying deoxyguano­
sine monophosphate we would simply say guanine (or G) when referring to the individual nucleotide. Thus 
we could write CCACCA to indicate a chain of interconnected cytosine-cytosine-adenine-cytosine-cytosine­
adenine nucleotides. 

The individual nucleotide chains are interconnected through the pairing of their nucleotide bases into a 
single double helix structure. The rules for pairing are that cytosine always pairs with guanine and thymine 
always pairs with adenine. These DNA chains are replicated during somatic cell division (that is, division 
of all cells except those destined to be sex cells) and the complete genetic information is passed on to the 
resulting cells. 

Genes are part of the chromosomes and coded for on the DNA strands. Individual functional sections 
of the threadlike DNA are called genes. The information encoded in genes directs the maintenance and 
development of the cell and organism. This information travels a path from the input to the output: DNA 
(genes) mRNA (messenger ribonucleic acid) ribosome/tRNA Protein. In essence the protein is ⇒ ⇒ ⇒
the final output that is generated from the genes, which serve as blueprints for the individual proteins. 

∗This section is based on notes written by Tim Wagner 

Courtesy of the Genomics Management Information System, U.S.
Department of Energy Genome Programs, http://genomics.energy.gov. 

http://genomics.energy.gov


22 2.7 Detail: The Genetic Code∗ 

Figure 2.3: A schematic of DNA showing its helical structure 

The proteins themselves can be structural components of your body (such as muscle fibers) or functional 
components (enzymes that help regulate thousands of biochemical processes in your body). Proteins are 
built from polypeptide chains, which are just strings of amino acids (a single polypeptide chain constitutes 
a protein, but often functional proteins are composed of multiple polypeptide chains). 

The genetic message is communicated from the cell nucleus’s DNA to ribosomes outside the nucleus via 
messenger RNA (ribosomes are cell components that help in the eventual construction of the final protein). 
Transcription is the process in which messenger RNA is generated from the DNA. The messenger RNA is a 
copy of a section of a single nucleotide chain. It is a single strand, exactly like DNA except for differences 
in the nucleotide sugar and that the base thymine is replaced by uracil. Messenger RNA forms by the same 
base pairing rule as DNA except T is replaced by U (C to G, U to A). 

This messenger RNA is translated in the cell body, with the help of ribosomes and tRNA, into a string 
of amino acids (a protein). The ribosome holds the messenger RNA in place and the transfer RNA places 
the appropriate amino acid into the forming protein, illustrated schematically in Figure 2.4. 

The messenger RNA is translated into a protein by first docking with a ribosome. An initiator tRNA 
binds to the ribosome at a point corresponding to a start codon on the mRNA strand – in humans this 
corresponds to the AUG codon. This tRNA molecule carries the appropriate amino acid called for by the 
codon and matches up at with the mRNA chain at another location along its nucleotide chain called an 
anticodon. The bonds form via the same base pairing rule for mRNA and DNA (there are some pairing 
exceptions that will be ignored for simplicity). Then a second tRNA molecule will dock on the ribosome of 
the neighboring location indicated by the next codon. It will also be carrying the corresponding amino acid 
that the codon calls for. Once both tRNA molecules are docked on the ribosome the amino acids that they 
are carrying bond together. The initial tRNA molecule will detach leaving behind its amino acid on a now 
growing chain of amino acids. Then the ribosome will shift over one location on the mRNA strand to make 
room for another tRNA molecule to dock with another amino acid. This process will continue until a stop 
codon is read on the mRNA; in humans the termination factors are UAG, UAA, and UGA. When the stop 
codon is read the chain of amino acids (protein) will be released om the ribosome structure. 

What are amino acids? They are organic compounds with a central carbon atom, to which is attached 
by covalent bonds 



23 2.7 Detail: The Genetic Code∗ 

Figure 2.4: RNA to Protein transcription (click on figure for the online animation at 
http://www.mtl.mit.edu/Courses/6.050/2008/notes/rna-to-proteins.html) 

• a single hydrogen atom H 

• an amino group NH2 

• a carboxyl group COOH 

• a side chain, different for each amino acid 

The side chains range in complexity from a single hydrogen atom (for the amino acid glycine), to struc­
tures incorporating as many as 18 atoms (arginine). Thus each amino acid contains between 10 and 27 
atoms. Exactly twenty different amino acids (sometimes called the “common amino acids”) are used in the 
production of proteins as described above. Ten of these are considered “essential” because they are not 
manufactured in the human body and therefore must be acquired through eating (arginine is essential for 
infants and growing children). Nine amino acids are hydrophilic (water-soluble) and eight are hydrophobic 
(the other three are called “special”). Of the hydrophilic amino acids, two have net negative charge in their 
side chains and are therefore acidic, three have a net positive charge and are therefore basic; and four have 
uncharged side chains. Usually the side chains consist entirely of hydrogen, nitrogen, carbon, and oxygen 
atoms, although two (cysteine and methionine) have sulfur as well. 

There are twenty different common amino acids that need to be coded and only four different bases. How 
is this done? As single entities the nucleotides (A,C,T, or G) could only code for four amino acids, obviously 
not enough. As pairs they could code for 16 (42) amino acids, again not enough. With triplets we could 
code for 64 (43) possible amino acids – this is the way it is actually done in the body, and the string of three 
nucleotides together is called a codon. Why is this done? How has evolution developed such an inefficient 
code with so much redundancy? There are multiple codons for a single amino acid for two main biological 
reasons: multiple tRNA species exist with different anticodons to bring certain amino acids to the ribosome, 
and errors/sloppy pairing can occur during translation (this is called wobble). 

Codons, strings of three nucleotides, thus code for amino acids. In the tables below are the genetic code, 
from the messenger RNA codon to amino acid, and various properties of the amino acids1 In the tables 
below * stands for (U, C, A, or G); thus CU* could be either CUU, CUC, CUA, or CUG. 

1shown are the one-letter abbreviation for each, its molecular weight, and some of its properties, taken from H. Lodish, D. 
Baltimore, A. Berk, S. L. Zipursky, P. Matsudaira, and J. Darnell, “Molecular Cell Biology,” third edition, W. H. Freeman and 
Company, New York, NY; 1995. 

http://www.mtl.mit.edu/Courses/6.050/2006/notes/rna-to-proteins.html
http://www.mtl.mit.edu/Courses/6.050/2008/notes/rna-to-proteins.html


24 2.7 Detail: The Genetic Code∗ 

Second Nucleotide Base of mRNA Codon 

F
ir

st
 N

uc
le

ot
id

e 
B

as
e 

of
 m

R
N

A
 C

od
on

U C A G 

U 

UUU = Phe 
UUC = Phe 
UUA = Leu 
UUG = Leu 

UC* = Ser 

UAU = Tyr 
UAC = Tyr 
UAA = stop 
UAG = stop 

UGU = Cys 
UGC = Cys 
UGA = stop 
UGG = Trp 

C CU* = Leu CC* = Pro 
CAU = His 
CAC = His 
CAA = Gln 
CAG = Gln 

CG* = Arg 

A 

AUU = Ile 
AUC = Ile 
AUA = Ile 

AUG = Met (start) 

AC* = Thr 

AAU = Asn 
AAC = Asn 
AAA = Lys 
AAG = Lys 

AGU = Ser 
AGC = Ser 
AGA = Arg 
AGG = Arg 

G GU* = Val GC* = Ala 

GAU = Asp 
GAC = Asp 
GAA = Glu 
GAG = Glu 

GG* = Gly 

Table 2.5: Condensed chart of Amino Acids 



25 2.7 Detail: The Genetic Code∗ 

Symbols Amino Acid M Wt Properties Codon(s) 

Ala A Alanine 89.09 Non-essential Hydrophobic GC* 

Arg R Arginine 174.20 Essential Hydrophilic, basic CG* AGA AGG 

Asn N Asparagine 132.12 Non-essential Hydrophilic, uncharged AAU AAC 

Asp D Aspartic Acid 133.10 Non-essential Hydrophilic, acidic GAU GAC 

Cys C Cysteine 121.15 Non-essential Special UGU UGC 

Gln Q Glutamine 146.15 Non-essential Hydrophilic, uncharged CAA CAG 

Glu E Glutamic Acid 147.13 Non-essential Hydrophilic, acidic GAA GAG 

Gly G Glycine 75.07 Non-essential Special GG* 

His H Histidine 155.16 Essential Hydrophilic, basic CAU CAC 

Ile I Isoleucine 131.17 Essential Hydrophobic AUU AUC AUA 

Leu L Leucine 131.17 Essential Hydrophobic UUA UUG CU* 

Lys K Lysine 146.19 Essential Hydrophilic, basic AAA AAG 

Met M Methionine 149.21 Essential Hydrophobic AUG 

Phe F Phenylalanine 165.19 Essential Hydrophobic UUU UUC 

Pro P Proline 115.13 Non-essential Special CC* 

Ser S Serine 105.09 Non-essential Hydrophilic, uncharged UC* AGU AGC 

Thr T Threonine 119.12 Essential Hydrophilic, uncharged AC* 

Trp W Tryptophan 204.23 Essential Hydrophobic UGG 

Tyr Y Tyrosine 181.19 Non-essential Hydrophobic UAU UAC 

Val V Valine 117.15 Essential Hydrophobic GU* 

start Methionine AUG 

stop UAA UAG UGA 

Table 2.6: The Amino Acids and some properties 



26 2.8 Detail: IP Addresses 

2.8 Detail: IP Addresses 

Table 2.7 is an excerpt from IPv4, http://www.iana.org/assignments/ipv4-address-space (version 4, which 
is in the process of being phased out in favor of version 6). IP addresses are assigned by the Internet Assigned 
Numbers Authority (IANA), http://www.iana.org/. 

IANA is in charge of all “unique parameters” on the Internet, including IP (Internet Protocol) addresses. 
Each domain name is associated with a unique IP address, a numerical name consisiting of four blocks of up 
to three digits each, e.g. 204.146.46.8, which systems use to direct information through the network. 

Internet Protocol Address Space 

The allocation of Internet Protocol version 4 (IPv4) address space to various registries is listed here. 
Originally, all the IPv4 address spaces was managed directly by the IANA. Later, parts of the address space 
were allocated to various other registries to manage for particular purposes or regions of the world. RFC 
1466 documents most of these allocations. 

Address Block Registry - Purpose Date 

000/8 IANA - Reserved Sep 81 
001/8 IANA - Reserved Sep 81 
002/8 IANA - Reserved Sep 81 
003/8 General Electric Company May 94 
004/8 Bolt Beranek and Newman Inc. Dec 92 
005/8 IANA - Reserved Jul 95 
006/8 Army Information Systems Center Feb 94 
007/8 IANA - Reserved Apr 95 
008/8 Bolt Beranek and Newman Inc. Dec 92 
009/8 IBM Aug 92 
010/8 IANA - Private Use Jun 95 
011/8 DoD Intel Information Systems May 93 
012/8 AT & T Bell Laboratories Jun 95 
013/8 Xerox Corporation Sep 91 
014/8 IANA - Public Data Network Jun 91 
015/8 Hewlett-Packard Company Jul 94 
016/8 Digital Equipment Corporation Nov 94 
017/8 Apple Computer Inc. Jul 92 
018/8 MIT Jan 94 
019/8 Ford Motor Company May 95 
020/8 Computer Sciences Corporation Oct 94 
021/8 DDN-RVN Jul 91 
022/8 Defense Information Systems Agency May 93 
023/8 IANA - Reserved Jul 95 
024/8 IANA - Cable Block Jul 95 
025/8 Royal Signals and Radar Establishment Jan 95 

..
. 

Table 2.7: IP Address Assignments - partial list 

http://www.iana.org/assignments/ipv4-address-space
http://www.iana.org/


27 2.9 Detail: Morse Code 

2.9 Detail: Morse Code 

Samuel F. B. Morse (1791–1872) was a landscape and portrait painter from Charleston, MA. He frequently 
travelled from his studio in New York City to work with clients across the nation. He was in Washington, 
DC in 1825 when his wife Lucretia died suddenly of heart failure. Morse learned of this event as rapidly as 
was possible at the time, through a letter sent from New York to Washington, but it was too late for him to 
return in time for her funeral. 

As a painter Morse met with only moderate success. Although his paintings can be found today in major 
museums—the Museum of Fine Arts, Boston, has seven—he never had an important impact on contemporary 
art. It was as an inventor that he is best known. (He combined his interest in technology and his passion 
for art in an interesting way: in 1839 he learned the French technique of making daguerreotypes and for a 
few years supported himself by teaching it to others.) 

Returning from Europe in 1832, he happened to meet a fellow passenger who had visited the great 
European physics laboratories. He learned about the experiments of Ampère, Franklin, and others wherein 
electricity passed instantaneously over any known length of wire. Morse realized this meant that intelligence 
could be transmitted instantaneously by electricity. He understood from the circumstances of his wife’s 
death the need for rapid communication. Before his ship even arrived in New York he invented the first 
version of what is today called Morse Code. His later inventions included the hand key and some receiving 
devices. It was in 1844 that he sent his famous message WHAT HATH GOD WROUGHT from Washington 
to Baltimore. That event caught the public fancy, and produced national excitement not unlike the Internet 
euphoria 150 years later. 

Morse Code consists of a sequence of short and long pulses or tones (dots and dashes) separated by short 
periods of silence. A person generates Morse Code by making and breaking an electrical connection on a 
hand key, and the person on the other end of the line listens to the sequence of dots and dashes and converts 
them to letters, spaces, and punctuation. The modern form of Morse Code is shown in Table 2.8. The at 
sign was added in 2004 to accommodate email addresses. Two of the dozen or so control codes are shown. 
Non-English letters and some of the less used punctuation marks are omitted. 

A K U 0 Question mark ·− −·− ··− −−−−− ··−−·· 
B −··· L ·−·· V ···− 1 ·−−−− Apostrophe ·−−−−· 
C M W 2 Parenthesis −·−· −− ·−− ··−−− −·−−·− 
D N X 3 Quotation mark −·· −· −··− ···−− ·−··−· 
E O Y 4 Fraction bar · −−− −·−− ····− −··−· 
F ··−· P ·−−· Z −−·· 5 ····· Equals −···− 
G Q Period 6 Slash −−· −−·− ·−·−·− −···· −··−· 
H ···· R ·−· Comma −−··−− 7 −−··· At sign ·−−·−· 
I ·· S ··· Hyphen −····− 8 −−−·· Delete prior word ········ 
J T Colon 9 End of Transmission ·−−− − −−−··· −−−−· ·−·−· 

Table 2.8: Morse Code 

If the duration of a dot is taken to be one unit of time then that of a dash is three units. The space 
between the dots and dashes within one character is one unit, that between characters is three units, and 
that between words seven units. Space is not considered a character, as it is in ASCII. 

Unlike ASCII, Morse Code is a variable-length code. Morse realized that some letters in the English 
alphabet are more frequently used than others, and gave them shorter codes. Thus messages could be 
transmitted faster on average, than if all letters were equally long. Table 2.9 shows the frequency of the 
letters in written English (the number of times each letter is, on average, found per 1000 letters). 

Morse Code was well designed for use on telegraphs, and it later saw use in radio communications before 
AM radios could carry voice. Until 1999 it was a required mode of communication for ocean vessels, even 
though it was rarely used (the theory apparently was that some older craft might not have converted to 
more modern communications gear). Ability to send and receive Morse Code is still a requirement for U.S. 



28 2.9 Detail: Morse Code 

132 E 61 S 24 U 
104 T 53 H 20 G, P, Y 
82 A 38 D 19 W 
80 O 34 L 14 B 
71 N 29 F 9 V 
68 R 27 C 4 K 
63 I 25 M 1 X, J, Q, Z 

Table 2.9: Relative frequency of letters in written English 

citizens who want some types of amateur radio license. 
Since Morse Code is designed to be heard, not seen, Table 2.8 is only marginally useful. You cannot learn 

Morse Code from looking at the dots and dashes on paper; you have to hear them. If you want to listen to 
it on text of your choice, try a synthesizer on the Internet, such as 

• http://morsecode.scphillips.com/jtranslator.html 

A comparison of Tables 2.8 and 2.9 reveals that Morse did a fairly good job of assigning short sequences 
to the more common letters. It is reported that he did this not by counting letters in books and newspapers, 
but by visiting a print shop. The printing presses at the time used movable type, with separate letters 
assembled by humans into lines. Each letter was available in multiple copies for each font and size, in the 
form of pieces of lead. Morse simply counted the pieces of type available for each letter of the alphabet, 
assuming that the printers knew their business and stocked their cases with the right quantity of each letter. 
The wooden type cases were arranged with two rows, the capital letters in the upper one and small letters 
in the lower one. Printers referred to those from the upper row of the case as “uppercase” letters. 

http://morsecode.scphillips.com/jtranslator.html


MIT OpenCourseWare 
http://ocw.mit.edu 

6.050J / 2.110J Information and Entropy 
Spring 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

	2 Codes
	2.1 Symbol Space Size
	2.2 Use of Spare Capacity
	2.2.1 Binary Coded Decimal (BCD)
	2.2.2 Genetic Code
	2.2.3 Telephone Area Codes
	2.2.4 IP Addresses
	2.2.5 ASCII

	2.3 Extension of Codes
	2.4 Fixed-Length and Variable-Length Codes
	2.4.1 Morse Code

	2.5 Detail: ASCII
	2.6 Detail: Integer Codes
	2.7 Detail: The Genetic Code*
	2.8 Detail: IP Addresses
	2.9 Detail: Morse Code




