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Problem Set 1 Solutions 

Solution to Problem 1: Completely Logical 

We are asked to check the boolean equality (A · B) + B = B. Here we present three ways to test this A · 
identity: direct algebraic manipulation, hand writing the truth tables, and a MATLAB calculation. 

Algebraic Manipulation 

The following manipulations are drawn from Table 1.4, Properties of Boolean Algebra in the course notes. 

(A · B) + B = (A + B) + B (de Morgan) (1) 
= A + (B + B) (Associative) (2) 
= A + B (Idempotent) (3) 
= A · B (de Morgan) (4) 

Thus we conclude that the identity is true. 

Truth Table Analysis 

We can also prove this identity by writing out the truth tables. By hand it looks like this, with all intermediate 
calculations: 

A B B A · B A · B A · B + B 

0 0 1 0 1 1 
0 1 0 0 1 1 
1 0 1 0 1 1 
1 1 0 1 0 0 

Table 1: Truth table analysis of Problem 1 

MATLAB Program 

Using the following code, we can solve the problem in MATLAB: 

% Start of file, filename testequality.m

% Check the equation OR(NAND(A,B), NOT(B)) = NAND(A,B)

%


A = [0 0 1 1];

B = [0 1 0 1];

Right = ∼(A & B);
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Left = (Right) (∼B);|
if Left == Right 

fprintf(’The equality is true.\n’); 
else 
fprintf(’The equality is false.\n’); 

end 

%%% End of file 

This code gives the following output: 

>> testequality 
The equality is true. 

Solution to Problem 2: Universality 

This particular definition of universality only treats arbitrary functions of two Boolean variables, but with 
any number of outputs. It appears to be an onerous task to prove universality for an arbitrary number 
of outputs. However, since each individual output of a multi­output function can be considered a separate 
one­ouput function, it is sufficient to prove the case of only one­output functions. This is why we begin by 
listing all one­output functions of one variable. 

Solution to Problem 2, part a. 

Each variable A and B has two possible values, making four different combinations of inputs (A, B). Each 
combination of inputs (four possible) can cause one of two output values. Therefore the number of possible 
one­output binary functions of two binary variables is 24, or 16. They are enumerated in the table below. 

F (A, B) 
A B b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

Table 2: Truth table analysis of Problem 2, part a 

Solution to Problem 2, part b. 

OR is not a universal function, and this can be seen most easily by noting that it is monotonic increasing; 
in other words, that in any nested OR function, once you get a 1, you will always have a 1. Thus you could 
never implement a NOT gate with nested OR functions: giving a 0 to a NOT gate gets you a 1 (an increase 
in the output), but giving a 1 to a NOT gets you a 0, which is a decrease in the output. Since the output 
of an OR gate is always the same as or greater than its input, a NOT gate can never be implemented. 

Solution to Problem 2, part c. 

AND cannot be a universal function for a similar reason: AND is monotonic increasing, and thus a NOT 
gate cannot be constructed. 
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Solution to Problem 2, part d. 

We will present a proof based on parity that XOR is not universal. Consider a finitely nested function of 
XORs which is ultimately a function of two inputs A and B and any finite number of constants 0 and 1. 
That is, we define a nested function of XORs to be an expression f drawn from the set EXPR={0, 1, A, B, 
or, XOR(fα, fβ )}, where fα and fβ are also drawn from the set EXPR, but only a finite number of times. 
Consider the property E which is the even parity of the four values fγ (0, 0), fγ (0, 1), fγ (1, 0), and fγ (1, 1). 
That is, a function fγ has property E if and only if 0, 2, or 4 of these values is 1. Thus A has property E, 
as does B, 0, and 1. 

If our function f is equal to AND(A, B), then it does not have property E. Therefore f cannot be equal 
to A, B, 0, or 1, and so it must be of the form XOR(fα, fβ ). An XOR function that has its output without 
property E has exactly one of its two inputs with property E and one without. This can be seen by noting 
that XOR produces a 1 only upon input of a 1 and a 0, i.e., an ‘unpaired’ 1. Thus the number of 1’s in 
the output is equal to the number of unpaired 1’s in the input. If there are an odd number of 1’s in the 
output, then the number of unpaired 1’s in one input must be even and the number of unpaired ones in the 
other input must be odd (an odd number can only be a sum of an even number and odd number). Since 
the number of paired 1’s in each input are by definition equal (call this number x), the number of 1’s in one 
of the inputs is x + e, and the number of 1’s in the other input is x + o, where e and o are even and odd 
numbers, respectively. Thus we have exactly one even and an one odd input. Returning to the main proof, 
where does the input without property E come from? Only another XOR function. Eventually you run out 
of functions (because we assumed finite) and thus f cannot be equal to AND(A, B). 

Solution to Problem 2, part e. 

NAND does not succumb to the type of proof shown above, and in fact it is a universal function. The easiest 
way to check this is to enumerate all possible cases, and the easiest way to do that is with MATLAB. The 
following program (with associated subfunction, which exists as a separate file) does the test: 

% Start of file, filename fnand.m

% Subfunction NAND(A,B)

%


function[C]=fnand(A,B) 
C=∼(A & B); 

%%% End of file 

% Start of file, filename nanduniv.m

% Demonstrate universality of NAND gate

%


A=[0 0 1 1] 
B=[0 1 0 1] 
N=[1 1 1 1]; 
Z=[0 0 0 0]; 

b 15=N % Ones

b 14=fnand(A,B)% NAND(A,B)

b 13=fnand(b 14,A)

b 12=fnand(A,1)% NOT(A)
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b 11=fnand(b 12,B)

b 10=fnand(B,1)% NOT(B)

b 9=fnand(fnand(A,B),fnand(b 12,b 10))

b 8=fnand(fnand(b 10,b 12),1)

b 7=fnand(b 8,1)

b 6=fnand(b 9,1)

b 5=fnand(b 10,1)

b 4=fnand(b 11,1)

b 3=fnand(b 12,1)

b 2=fnand(b 14,1)

b 1=fnand(b 13,1)

b 0 = Z % Zeros


%%% End of file


This code gives the following output: 

>> fnanduniv

A =

0 0 1 1


B =

0 1 0 1


b 15 =

1 1 1 1


b 14 =

11 1 0


b 13 =

1 1 0 1


b 12 =

1 1 0 0


b 11 =

1 0 1 1


b 10 =

1 0 1 0


b 9 =

1 0 0 1


b 8 =

1 0 0 0


b 7 =

0 1 1 1


b 6 =

0 1 1 0


b 5 =

0 1 0 1


b 4 =

0 1 0 0


b 3 =

0 0 1 1


b 2 =

0 0 1 0


b 1 =
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0 0 0 1 
b 0 = 
0 0 0 0 

Solution to Problem 3: Make it Fit 

Solution to Problem 3, part a. 

There are 96 characters we need to encode: lower case (26), upper case (26), digits (10), space (1), punctuation 
marks (32) and ETX (1). The Caltech code uses 28 out of a possible 32 5­bit sequences, and uses all of the 
9­bit sequences, of which there are 64 (only 6 of the 9 bits are used, giving 26 = 64 codes). Thus the Caltech 
code has only 92 spots and is not large enough for all of our characters. The MIT code, on the other hand, 
uses all 32 of its 6­bit sequences, and has 64 spots left in the 7­bit sequences, giving a total of 96 spots in 
the code, just enough to fit all of the characters desired. Thus the MIT code works and the Caltech code 
does not, as one would naturally expect. 

Solution to Problem 3, part b. 

The Caltech graduate’s code does not work. One possible redefinition of it is as follows: There are four 
unused 5­bit codes 11100, 11101, 11110, and 11111. Suppose we reclaim the next lowest 5­bit code, namely 
11011. Now we have 27 5­bit codes to assign. We will assign these to the 26 lower case letters and space 
(the most commonly occurring characters). Then we will add four bits to the unused 5­bit codes (call these 
headers), giving us another 80 unique codes (4­bits per header gives 16 unique codes per header, times five 
headers equals 80 unique codes). This gives us a total of 107 unique codes (27 5­bit and 80 9­bit) which 
is enough to fit all of the symbols we need, plus extras if we wish. Note that this code has become more 
complicated to decode, since you have to keep watch for five header bits instead of one. 

Solution to Problem 3, part c. 

The following table compares the MIT code, ASCII, the 8­bit computer code, and the modified Caltech code 
presented in previous subsolution . Remember that ASCII code uses 7 bits per character no matter what, 
and 8­bit computer code is just that, 8­bits per character. 

# of bits required 
Char. type # of Chars MIT Code ASCII 8­bit Modified Caltech Code 

lower case 200 1200 1400 1600 1000 
space 50 300 350 400 250 

upper case 20 140 140 160 180 
common punc. 5 30 35 40 45 

uncommon punc. 20 140 140 160 180 
ETX 1 6 7 8 9 

Total 296 1816 2072 2368 1664 
Average Bits/Char. – 6.13 7 8 5.62 

Table 3: Comparison of character codes for Problem 3, part c 
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Solution to Problem 3, part d. 

To modify the MIT graduate’s code to accomodate 12 extra characters, one possible solution is as follows: 
The 12 additional characters are relatively rare, and so we can afford to use a longer sequence of 8 bits for 
them. Additionally, to distinguish them from the other sequences in our code, we could specify that they all 
start with 111. However, this will invalidate 16 of the 7­bit sequences (namely, all of those which start with 
111). So we have newly available all the 8­bit codes that start with 111, or 32 codes, minus the 7­bit codes 
that start with 111, so we have a total of 16 new 8­bit codes. The extra 12 characters can be distributed 
among these codes. 

Solution to Problem 3, part e. 

The following two MATLAB programs implement an encoder and decoder for a select few letters of the 
MIT graduate’s code. The first program is ‘encode’, and it takes a string of alphanumeric characters and 
outputs a sequence of 1’s and 0’s ordered according to the MIT Code into the variable encodedmessage. If 
it encounters a character it does not recognize, it inserts a space. 

% Start of file, filename encode.m

% MIT Code Encoder

%


%%% Get string to encode

message = input(’Input a string you would like encoded

(please use only the first seven letters, space, period,

and exclamation point):’,’s’);


messagelength=length(message); 

encodedmessage=[]; 

%%% Encode each letter and append it to encodedmessage for i=1:messagelength 
switch message(i) 
case {’a’}

newcharacter=0;

newcharacter=de2bi(newcharacter,6, ’left­msb’);


case {’b’}

newcharacter=1;

newcharacter=de2bi(newcharacter,6, ’left­msb’);


case {’c’}

newcharacter=2;

newcharacter=de2bi(newcharacter,6, ’left­msb’);


case {’d’}

newcharacter=3;

newcharacter=de2bi(newcharacter,6, ’left­msb’);


case {’e’}

newcharacter=4;

newcharacter=de2bi(newcharacter,6, ’left­msb’);


case {’f’}

newcharacter=5;

newcharacter=de2bi(newcharacter,6, ’left­msb’);


case {’g’}

newcharacter=6;
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newcharacter=de2bi(newcharacter,6, ’left­msb’);

case {’ ’
}

newcharacter=27;

newcharacter=de2bi(newcharacter,6, ’left­msb’);


case {’.’}

newcharacter=28;

newcharacter=de2bi(newcharacter,6, ’left­msb’);


case {’!’}

newcharacter=29;

newcharacter=de2bi(newcharacter,6, ’left­msb’);


case {’A’}

newcharacter=65;

newcharacter=de2bi(newcharacter,7, ’left­msb’);


case {’B’}

newcharacter=66;

newcharacter=de2bi(newcharacter,7, ’left­msb’);


case {’C’}

newcharacter=67;

newcharacter=de2bi(newcharacter,7, ’left­msb’);


case {’D’}

newcharacter=68;

newcharacter=de2bi(newcharacter,7, ’left­msb’);


case {’E’}

newcharacter=69;

newcharacter=de2bi(newcharacter,7, ’left­msb’);


case {’F’}

newcharacter=70;

newcharacter=de2bi(newcharacter,7, ’left­msb’);


case {’G’}

newcharacter=71;

newcharacter=de2bi(newcharacter,7, ’left­msb’);


otherwise

newcharacter=27;

newcharacter=de2bi(newcharacter,6, ’left­msb’);


end

encodedmessage=cat(2,encodedmessage,newcharacter);


end


%%% Add the ETX character encodedmessage=cat(2,encodedmessage, de2bi(31,6,’left­msb’)) 

%%% End of file 

This code, when run, outputs the following (in an 80 character wide window): 

>> encode Input a string you would like encoded (please use only the first seven

letters, space, period, and exclamation point):Egad! Deb bagged a cad.

encodedmessage =

Columns 1 through 13


1 0 0 0 1 0 1 0 0 0 1 1 0

Columns 14 through 26


0 0 0 0 0 0 0 0 0 0 1 1 0

Columns 27 through 39
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1 1 1 0 1 0 1 1 0 1 1 1 0

Columns 40 through 52


0 0 1 0 0 0 0 0 1 0 0 0 0

Columns 53 through 65


0 0 0 1 0 1 1 0 1 1 0 0 0

Columns 66 through 78


0 0 1 0 0 0 0 0 0 0 0 0 1

Columns 79 through 91


1 0 0 0 0 1 1 0 0 0 0 1 0

Columns 92 through 104


0 0 0 0 0 1 1 0 1 1 0 1 1

Columns 105 through 117

0 0 0 0 0 0 0 1 1 0 1 1 0


Columns 118 through 130

0 0 0 1 0 0 0 0 0 0 0 0 0


Columns 131 through 143

0 0 1 1 0 1 1 1 0 0 0 1 1


Columns 144 through 146

1 1 1


The following is the decoder implementation. It takes a vector of 1’s and 0’s in the encodedmessage 
variable and outputs the alphanumeric translation of that string, according to the MIT code. 

% Start of file, filename decode.m

% MIT Code Decoder

%


%%% Initialize variables

decodedcharacter=[];

decodedmessage=[];

codelength=0;

i=1;


messagelength=length(encodedmessage); 

while i < messagelength,

%%% Determine if it is a 6­bit or 7­bit code


if encodedmessage(i) == 0

codelength=6;


else

codelength=7;


end


%%% Read out the bits associated with the code

decodedcharacter=[];

for k=1:codelength

decodedcharacter=cat(2,decodedcharacter,encodedmessage(i+k­1));

end


%%% Decode the character

decodedcharacter=bi2de(decodedcharacter, ’left­msb’);
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switch decodedcharacter

case 0

decodedcharacter=’a’;


case 1

decodedcharacter=’b’;


decodedcharacter=’c’;


decodedcharacter=’d’;


decodedcharacter=’e’;


decodedcharacter=’f’;


decodedcharacter=’g’;


decodedcharacter=’ ’;


decodedcharacter=’.’;


decodedcharacter=’!’;


decodedcharacter=’A’;


decodedcharacter=’B’;


decodedcharacter=’C’;


decodedcharacter=’D’;


decodedcharacter=’E’;


decodedcharacter=’F’;


decodedcharacter=’G’;

case(31)


decodedcharacter=’(ETX)’;

otherwise


decodedcharacter=’ ’;


case 2


case 3


case 4


case 5


case 6


case 27


case 28


case 29


case 65


case 66


case 67


case 68


case 69


case 70


case 71


end 
decodedmessage=cat(2,decodedmessage,decodedcharacter); 

%%% Increment the position counter for the encoded message 
i=i+codelength; 

end 

%%% Output decoded message 
fprintf(decodedmessage) 
fprintf(’\n’) 
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%%% End of file 

The ‘decode’ program, when presented with the input “Egad! Deb bagged a cad.” encoded by ‘encode’, 
will output the following: 

>> decode

Egad! Deb bagged a cad.(ETX)
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