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Problem 1: Cheap Heat 

The heat engine described in the Chapter 13 of the notes catches your fancy because it seems to be versatile. 
You don’t need a heat engine but you do want to heat your house more efficiently. You figure that you can 
make the device work as a heat pump, transferring energy from the lower temperature outdoors to your 
higher temperature living room. The cycle of the heat engine is pictured here (the cycle of your heat pump 
may be different but has the same rectangular shape). 

Figure 11–1: Heat Engine Cycle 

You decide to simplify the design by using only one dipole, so there are only two states, called up and 
down, with energies 

State Energy 

up 

down 

−mdH 

mdH 

Table 11–1: System Parameters 

where md = 1.165 × 10−29 Joule­meters/ampere. 
In a heat pump the idea is to take heat from the low­temperature (T1) environment (in this case the 

outdoors) into the working material (in this case the magnetic dipole) in order to heat the material inside 
the high­temperature environment. You decide to run the system using a rectangular path similar to the 
one pictured above. 
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a. To use the device as a heat pump, you can either run it as shown above or in the reverse direction.

Which should you choose? Hint: a reversible heat engine, when run backwards, can serve as either

a refrigerator or a heat pump.


Your living room is at room temperature (17 degrees Celsius). You want your device to work when the 
temperature outdoors is freezing (0 degrees Celsius). 

b. Express the indoor and outdoor temperature in Kelvin. 

Continuing your design, you want to calculate how much energy can be delivered to the living room. You 
figure that an inexpensive permanent magnet could be moved toward and away from the dipole, and its field 
at the dipole could be made as large as 3000 amperes/meter. You decide to run the cycle as follows: 

Point a b c d 

H (A/m) ? 3000 1000 ? 

Table 11–2: More Parameters 

Now you want to calculate the work and heat into the system during each of the four legs of the cycle. 
On each leg, the change in energy is related to the work and heat as dE = dw + dq. According to Chapter 
13, the work and heat are related to changes dH and dS as dw = (E/H) dH and dq = T dS. The way the 
cycle is defined it is relatively easy to find dq since on each leg either S or T is constant. 

c. In order to analyze this cycle you must first determine the magnetic field Ha and Hd at points 
a and d. Focus first on the leg c to d, where dS = 0 and dT = T2 − T1. This equation from 
Chapter 13 is helpful: 

�	 1 1 1 
T dS = pi(Ei(H) − E)2 dT − dH	 (11–1)

kB T T H 
i 

Use this equation to determine a relationship among T1, T2, Hc, and Hd. 

d. From this relationship find Hd. 

The “coefficient of performance” of a heat pump is defined as the ratio of heat released to the hot 
environment to the work done on the system, in our case by the magnetic field. The larger this coefficient, 
the less power is needed for the same amount of heating. Surprisingly, the coefficient of performance can 
be found without actually solving for the amount of energy converted. The coefficient is therefore universal, 
not depending on the details of the refrigerator but only on the two temperatures T1 and T2. 

e. Find the coefficient of performance of this heat pump. 

f. Now focus on the leg b to a. Determine a relationship among T1, T2, Ha, and Hb. 

g. Calculate the magnetic field Ha. 

h. Next you want to know the work and heat into the system during the four legs of the cycle.	 First

consider the top leg, d to c. What is the heat into the system dq on that leg?


To go further you have to calculate the probabilities, since you need them to find the energy E at each of 
the four corners. You already know the temperature and magnetic field at each corner, so it is straightforward 
to find α and then the probabilities using these equations from Chapter 13: 

e−Ei /kB T pi = e−α	 (11–2) 

e−Ei /kB Tα = ln	 (11–3) 
i 
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Because the magnetic energy is so small compared with thermal energy kB T , the probabilities are all 
very close to 0.5. You may find it necessary to retain a lot of significant figures, or else use a suitable 
approximation. 

i. Find the two probabilities	 pup and pdown at each of the four corners of the cycle. Note that 
for adiabatic legs, the probabilities do not change so for example they are the same at points 
a and b. Hint: you can check your results with these approximate answers – at point a, pup = 
0.5 + 4.3664 × 10−6 and at point c, pdown = 0.5 − 1.455 × 10−6 . 

j. Find the energy E = Eipi for each of the four corners. i 

k. Find the difference between the two entropies, S2 − S1. Since S1 and S2 are very nearly equal,

you will have to keep many significant figures before taking the difference between them.


l. Find the heat dq for each of the four legs (you have already found one of these). Hint: the heat 
is zero for two of the legs. 

m. Find the work dw for each of the four legs by calculating the change in energy and subtracting

the heat.


n. Find the net work into the system in one cycle, starting at point a and ending up at the same

point. Hint: it is positive, meaning that energy actually is put in as work.


o. Calculate the ratio of heat out at the higher temperature T2 to work in during one cycle. Compare

this to the coefficient of performance calculated earlier.


p. How many cycles would this machine require to heat one gram of air one degree Celsius? (Assume

that the specific heat of air is approximately 0.715 Joules per degree Celsius per gram.)


q. You want to speed up the machine by using more dipoles.	 You have heard that Avogadro’s

number 6.02 × 1023 is the number of molecules in a reasonable size chunk of material, so you

decide to use that many dipoles. Assuming you can get it all working, how many cycles would

your new machine need to heat the same mass the same amount?


Problem 2: Information is Cool 

An exciting application of thermodynamics is in the study of biological systems. The energy cycles that 
we have seen in class are the starting point for modelling processes that occur throughout nature, whether 
it be the dynamics of a muscle cell or an animal’s thermal regulation facilities. For this problem we will 
examine forms of energy loss and storage in the human body. Please note that the unit Calorie, used to 
indicate the energy content of foods you consume, is actually a kilocalorie which is equal to 4.1868 × 103 

Joules. The approximate basal metabolic rate of an average 70 kg adult male is 75 Calories/hour (that is, 
the body dissipates 75 Calories per hour to maintain its normal body temperature while performing normal 
bodily tasks). What a person doesn’t take in through diet will ultimately be burned from the body’s store 
of fat, and when a person takes in more Calories than is needed the excess energy is normally stored as fat. 
One kilogram of fat corresponds to 33.1 × 106 Joules of metabolized energy. 

Have fun with these simple exercises in energy conversion. 

a. Express the basal metabolic rate, 75 Calories/hour, in Watts, or Joules per second.	 Optional

question: You know what a 100­Watt light bulb looks like when turned on. Why don’t people

look like that?


b. How many Calories will a person who does no exercise (75 Calories/hr) need to eat in one day

to maintain normal body weight?
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c. A person who jogs normally burns 550, rather than 75, Calories/hour. Consider two people who 
follow exactly the same routine and eat the same food for one month, except that one jogs for 
thirty minutes each day. If the jogger neither gains nor loses weight during this month, how much 
weight does the non­jogger gain? 

d. Suppose Room  is losing heat at a rate of 9000 × 103 Joules/hour to the outdoors, and that 
the 6.050/2.110 lecture has 24 students in the room, each dissipating heat at a rate of 100 Watts 
when awake, or 70 Watts when sleeping. The professor, who is dissipating 200 Watts, can either 
be interesting, thereby keeping the students awake, or boring, putting them to sleep. How many 
students should be kept awake in order for the temperature of the room to remain constant? 

e. Paul drinks his root beer cold (0 degrees Celsius), arguing that a significant portion of the Calories 
consumed are used to raise the temperature of the beverage to body temperature (98.6 degrees 
Fahrenheit), rather than going into fat. Are you convinced? Consider that a 355 ml can of A&W 
root beer has 170 Calories, and that about one Calorie is needed to raise one liter of water one 
degree Celsius. 

Turning in Your Solutions 

You may turn in this problem set by e­mailing your written solutions, M­files, and diary. 
Do this either by attaching them to the e­mail as text files, or by pasting their content directly into the body 
of the e­mail (if you do the latter, please indicate clearly where each file begins and ends). If you have figures 
or diagrams you may include them as graphics files (GIF, JPG or PDF preferred) attached to your email. 
The deadline for submission is the same no matter which option you choose. 

Your solutions are due 5:00 PM on Friday, May 9, 2003. Later that day, solutions will be posted on the 
course website. 
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