
1 6.090, Fall Semester, 1996­97—Problem Set 4


Department of Electrical Engineering and Computer Science 
6.090—Building Programming Experience 

Fall Semester, 1996­97 

Problem Set 4 

The Square­limit language 

Issued: Tuesday, September 24, 1996 
Written solutions due: in recitation on Friday, October 4, 1996 
Tutorial preparation for: week of September 30, 1996 
Reading: Section 2.2; code files hend.scm and hutils.scm (attached) 

In this assignment, you will work with Peter Henderson’s “square­limit” graphics design language, 
which will be described in lecture on September 26, and which appears in Section 2.2.4 of the notes. 
Before beginning work on this programming assignment, you should review that section. The goal 
of this problem set is to reinforce ideas about data abstraction and higher­order procedures, and 
to emphasize the expressive power that derives from appropriate primitives, means of combination, 
and means of abstraction.1 

Section 1 of this handout reviews the language, similar to what appears in the notes. You will need 
to study this in order to prepare the tutorial presentations in section 2. Section 3 gives the lab 
assignment, which includes an optional design contest. 

1. The Square­limit language 

Recall that the key idea in the square­limit language is to use painter procedures that take frames 
as inputs and paint images that are scaled to fit the frames. To do this, we will need some basic 
building blocks. 

Basic data structures 

Vectors consist of a pair of numbers, glued together in some appropriate manner. The contract we 
enforce for this data abstraction is the following: 

•	 the constructor make­vect takes two arguments and associates them into a vector, and 

•	 the selectors xcor­vect and ycor­vect return the components of the vector constructed by 
make­vect. (You’ll actually implement this abstraction later on, but of course for purposes 
of discussion, we only need to know the abstraction contract.) 

We need a set of operations on vectors, and in particular assume three: 

This problem set was developed by Hal Abelson, based upon work by Peter Henderson (“Functional Geometry,” 
in Proc. ACM Conference on Lisp and Functional Programming, 1982). The image display code was designed and 
implemented by Daniel Coore. 

1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY



2 6.090, Fall Semester, 1996­97—Problem Set 4 

•	 add­vect takes two vectors as input, and returns as output another vector, whose components 
are the sums of the components of the input vectors; 

•	 sub­vect takes two vectors as input, and returns as output another vector, whose components 
are the differences of the components of the input vectors (e.g. the first vector minus the 
second); 

•	 scale­vect takes as input a number and a vector and returns a vector whose components 
are the components of the input vector, multiplied by the input number. 

A pair of vectors determines a directed line segment—the segment running from the endpoint of 
the first vector to the endpoint of the second vector. Again, we just need a contract: 

•	 constructor is make­segment and 

•	 selectors are start­segment and end­segment. 

Frames 

A frame is represented by three vectors: an origin and two edge vectors. 

(define (make­frame origin edge1 edge2) 
(list ’frame origin edge1 edge2)) 

\null 
(define origin­frame cadr) 
(define edge1­frame caddr) 
(define edge2­frame cadddr) 

The frame’s origin is given as a vector with respect to the origin of the graphics­window coordinate 
system. The edge vectors specify the offsets of the corners of the frame from the origin of the frame. 
If the edges are perpendicular, the frame will be a rectangle; otherwise it will be a more general 
parallelogram. 

Each frame determines a system of “frame coordinates” (x, y) where (0, 0) is the origin of the frame, 
x represents the displacement along the first edge (as a fraction of the length of the edge) and y is 
the displacement along the second edge. For example, the origin of the frame has frame coordinates 
(0, 0) and the vertex diagonally opposite the origin has frame coordinates (1, 1). 

Another way to express this idea is to say that each frame has an associated frame coordinate map 
that transforms the frame coordinates of a point into the Cartesian plane coordinates of the point. 
That is, (x, y) gets mapped onto the Cartesian coordinates of the point given by the vector sum 

Origin(Frame) + x · Edge1(Frame) + y · Edge2(Frame) 

We can represent the frame coordinate map by the following procedure: 



3 6.090, Fall Semester, 1996­97—Problem Set 4 

(define (frame­coord­map frame) 
(lambda (point­in­frame­coords) 

(add­vect 
(origin­frame frame) 
(add­vect (scale­vect (xcor­vect point­in­frame­coords) 

(edge1­frame frame)) 
(scale­vect (ycor­vect point­in­frame­coords) 

(edge2­frame frame)))))) 

For example, ((frame­coord­map a­frame) (make­vect 0 0)) will return the same value as 
(origin­frame a­frame). 

The procedure make­relative­frame provides a convenient way to transform frames. Given three 
points origin, corner1, and corner2 (expressed in frame coordinates), it returns a procedure 
which for any frame f returns a new frame g which uses those points in f coordinates to define the 
corners of the g frame: 

(define (make­relative­frame origin corner1 corner2) 
(lambda (frame) 

(let ((m (frame­coord­map frame))) 
(let ((new­origin (m origin))) 

(make­frame new­origin 
(sub­vect (m corner1) new­origin) 
(sub­vect (m corner2) new­origin)))))) 

For example, 

(make­relative­frame (make­vect .5 .5) (make­vect 1 .5) (make­vect .5 1)) 

returns the procedure that takes a frame f and returns the upper right quarter of f as a new frame 
g. 

Painters 

As described in the notes, a painter is a procedure that, given a frame as argument, “paints” a 
picture in the frame. That is to say, if p is a painter and f is a frame, then evaluating (p f) will 
cause an image to appear in the frame. The image will be scaled and stretched to fit the frame. 

The language you will be working with includes four ways to create primitive painters. 

The simplest painters are created with number­>painter, which takes a number as argument. 
These painters fill a frame with a solid shade of gray. The number specifies a gray level: 0 is 
black, 255 is white, and numbers in between are increasingly lighter shades of gray. Here are some 
examples: 

(define black (number­>painter 0)) 
(define white (number­>painter 255)) 
(define gray (number­>painter 150)) 



6.090, Fall Semester, 1996­97—Problem Set 4 4 

You can also specify a painter using procedure­>painter, which takes a procedure as argument. 
The procedure determines a gray level (0 to 255) as a function of (x, y) position, for example: 

(define diagonal­shading 
(procedure­>painter (lambda (x y) (* 100 (+ x y))))) 

The x and y coordinates run from 0 to 1 and specify the fraction that each point is offset from the 
frame’s origin along the frame’s edges. Thus, the frame is filled out by the set of points (x, y) 
such that 0 ≤ x, y ≤ 1. 

A third kind of painter is created by segments­>painter, which takes a list of line segments as 
argument. This paints the line drawing specified by the list segments. The (x, y) coordinates of the 
line segments are specified as above. For example, you can make the “Z” shape as 

(define mark­of­zorro 
(let ((v1 (make­vect .1 .9))


(v2 (make­vect .8 .9))

(v3 (make­vect .1 .2))

(v4 (make­vect .9 .3)))


(segments­>painter 
(list (make­segment v1 v2)


(make­segment v2 v3)

(make­segment v3 v4)))))


The final way to create a primitive painter is from a stored image. The procedure load­painter 
uses an image from the image collection to create a painter 2. For instance: 

(define fovnder (load­painter "fovnder")) 

will paint an image of William Barton Rogers, the fovnder of MIT. 

Transforming and combining painters 

Given a painter, we can produce a new painter that transforms its frame before painting in it. For 
example, if p is a painter and f is a frame, then 

(p ((make­relative­frame (make­vect .5 .5) (make­vect 1 .5) (make­vect .5 1)) 
f)) 

will paint in the upper­right­hand corner of the frame. 

We can abstract this idea with the following procedure: 
2The images are kept in the directory . The load­painter procedure transforms them into painters, 

so that they can be scaled and deformed by the operations in the square­limit language. Use the Edwin command 
M­x list­directory to see entire contents of the directory. Each image is 128 × 128, stored in “pgm” format. 

[Note: In "fovnder" we see the
use of the Latin 'v' that represents
a modern 'u'.] 



5 6.090, Fall Semester, 1996­97—Problem Set 4 

(define (transform­painter origin corner1 corner2) 
(lambda (painter) 

(compose painter 
(make­relative­frame origin corner1 corner2)))) 

Calling transform­painter with an origin and two corners returns a procedure that transforms 
a painter into one that paints relative to a new frame with the specified origin and corners. For 
example, we could define: 

(define (shrink­to­upper­left painter) 
((transform­painter (make­vect .5 .5) (make­vect 1 .5) (make­vect .5 1)) 
painter)) 

Note that this can be written equivalently as 

(define shrink­to­upper­left 
(transform­painter (make­vect .5 .5) (make­vect 1 .5) (make­vect .5 1))) 

Another transformed frame, called flip­horiz should flip images horizontally (we’ll ask you to 
implement this later), another rotates images counterclockwise by 90 degrees: 

(define rotate90 
(transform­painter	 (make­vect 1 0)


(make­vect 1 1)

(make­vect 0 0)))


and similar rotations, rotate180 and rotate270, can be created.


We can combine the results of two painters in a single frame by calling each painter on the frame:


(define (superpose	 painter1 painter2) 
(lambda (frame)


(painter1 frame)

(painter2 frame)))


To draw one image beside another, we combine one in the left half of the frame with one in the 
right half of the frame: 

(define (beside painter1 painter2) 
(let ((split­point (make­vect .5 0))) 

(superpose 
((transform­painter	 zero­vector


split­point

(make­vect 0 1))




6 6.090, Fall Semester, 1996­97—Problem Set 4 

painter1) 
((transform­painter	 split­point


(make­vect 1 0)

(make­vect .5 1))


painter2)))) 

We can also define painters that combine painters vertically, by using rotate together with beside. 
The painter produced by below shows the image for painter1 below the image for painter2: 

(define (below painter1 painter2) 
(rotate270 (beside (rotate90 painter2) 

(rotate90 painter1)))) 

2. Tutorial exercises 

You should prepare the following exercises for oral presentation in tutorial. They cover material in 
sections 2.1 and 2.2 of the text, and they also test your understanding of the square­limit language 
described above, in preparation for doing this week’s lab in. You may wish to use the computer to 
check your answers to these questions, but you should try to do them (at least initially) without 
the computer. 

Tutorial exercise 1:	 Do exercises 2.17, 2.22, and 2.23 from the notes. 

Tutorial exercise 2: In the square­limit language, a frame is represented as a list of four things— 
the symbol frame followed by the origin and the two edge vectors. 

1. Pick some values for the coordinates of origin and edge vectors and draw the box­and­pointer 
structure for the resulting frame – using some definition that you choose for vectors as well. 

2. Suppose we change the representation of frames and represent them instead as a list of 
three vectors—the origin and the two edges—without including the symbol frame. Give 
the new definitions of make­frame, origin­frame, edge1­frame, and edge2­frame for this 
representation. In addition to changing these constructors and selectors, what other changes 
to the implementation of the square­limit language are required in order to use this new 
representation? 

3. Why might it be useful to include the symbol frame as part of the representation of frames? 

Tutorial exercise 3:	 Describe the patterns drawn by 

(procedure­>painter (lambda (x y) (* x y))) 
(procedure­>painter (lambda (x y) (* 255 x y))) 



6.090, Fall Semester, 1996­97—Problem Set 4 7 

Tutorial exercise 4: Section 1 defines below in terms of beside and rotate. Give an alternative 
definition of below that does not use beside. 

Tutorial exercise 5: Describe the effect of 

(transform­painter (make­vect .1 .9) 
(make­vect 1.5 1) 
(make­vect .2 0)) 

3. To do in lab 

Load the code for problem set 3, which contains the procedures described in section 1. You will 
not need to modify any of these. We suggest that you define your new procedures in a separate 
(initially empty) editor buffer, to make it easy to reload the system if things get fouled up. 

When the problem set code is loaded, it will create three graphics windows, named g1, g2, and g3. 
To paint a picture in a window, use the procedure paint. For example, 

(paint g1 fovnder) 

will show a picture of William Barton Rogers in window g1 (once you have successfully completed 
lab exercise 1 and (load­rest) successfully evaluates. 

There is also a procedure called paint­hi­res, which paints the images at higher resolution (256 ×
256 rather than 128 × 128). Painting at a higher resolution produces better looking images, but 
takes four times as long. As you work on this problem set, you should look at the images using 
paint, and reserve paint­hi­res to see the details of images that you find interesting.3 

Printing pictures You can print images on the laserjet printer with Edwin’s M­x print­graphics 
command as described in the Don’t Panic manual. The laserjet cannot print true greyscale pictures, 
so the pictures will not look as good as they do on the screen. Please print only a few images—only 
the ones that you really want—so as not to waste paper and clog the printer queues. We suggest 
that you print only images created with paint­hi­res, not paint. 

Lab exercise 1: Complete the implementation of the data abstractions, by choosing a repre­
sentation for vectors (make­vect, xcor­vect, ycor­vect) and for segments (make­segment, 
start­segment, end­segment). Use those abstractions to implement the three operations on 
vectors (add­vect, sub­vect, scale­vect). You may find it convenient to do this in the copy 
of hutils.scm that was loaded into your editor. Once you are done adding your definitions, save 
the file and then load it into your Scheme buffer by evaluating: 

(load ‘‘~/work/hutils.scm’’) 

3Painting a primitive image like fovnder won’t look any different at high resolution, because the original picture 
is only 128 × 128. But as you start stretching and shrinking the image, you will see differences at higher resolution. 



8 6.090, Fall Semester, 1996­97—Problem Set 4 

If you work on the problem set in multiple sessions, be sure that you reload this file after you have 
loaded up the problem set, so that your new definitions will override the ones in the problem set 
file. 

Turn in a listing of your code, and some examples of using it. 

Once you have created your data abstractions, evaluate 

(load­rest) 

to have the rest of the code for the problem set loaded into your Scheme environment. 

Lab exercise 2: Make a collection of primitive painters to use in the rest of this lab. In addition 
to the ones predefined for you (and listed in section 1), define at least one new painter of each 
of the four primitive types: a uniform grey level made with number­>painter, something defined 
with procedure­>painter, a line­drawing made with segments­>painter, and an image of your 
choice that is loaded from the 6001 image collection with load­painter. Turn in a list of your 
definitions. 

Lab exercise 3: Earlier we referred to examples of transforming painters, i.e. procedures that 
take a painter as input and create a new painter that will draw relative to some new frame. 
Increase the repetoire of such methods by implementing a transformation, flip­horiz, which 
takes as input a painter, and returns a new painter that draws its input flipped about the vertical 
axis. Also implement rotate180 and rotate270 in analogy to rotate90. Turn in a listing of your 
procedures. 

Lab exercise 4: Experiment with some combinations of your primitive painters, using beside, 
below, superpose, flips, and rotations, to get a feel for how these means of combination work. You 
needn’t turn in anything for this exercise. 

Lab exercise 5: The “diamond” of a frame is defined to be the smaller frame created by joining 
the midpoints of the original frame’s side s . Define a procedure diamond that transforms a painter 
into one that paints its image in the diamond of the specified fram e. Try some examples, and turn 
in a listing of your procedure. 

Lab exercise 6: The “diamond” transformation has the property that, if you start with a square 
frame, the diamond frame is still square (although rotated). Define a transformation similar to 
diamond, but which does not produce square frames. Try your transformation on some images to 
get some nice effects. Turn in a listing of your procedure. 

Lab exercise 7: The following recursive right­split procedure was demonstrated in lecture: 



9 6.090, Fall Semester, 1996­97—Problem Set 4 

(define (right­split painter n) 
(if (= n 0) 

painter 
(let ((smaller (right­split painter (­ n 1)))) 

(beside painter (below smaller smaller))))) 

Try this with some of the painters you’ve previously defined, both primitives and combined ones. 
Now define an analogous up­split procedure . Make sure to test it on a variety of painters. 
Turn in a listing of your procedure. (In defining your procedure, remember that 

(below painter1 painter2) produces painter1 below painter2.) 

Lab exercise 8: Right­split and up­split are both examples of a common pattern that begins 
with a means of combining two painters and applies this over and over in a recursive pattern. We 
can capture this idea in a procedure called keep­combining, which takes as argument a combiner 
(which combines two painters). For instance, we should be able to give an alternative definition of 
right­split as 

(define new­right­split 
(keep­combining 
(lambda (p1 p2) 

(beside p1 (below p2 p2))))) 

Complete the following definition of keep­combining: 

(define (keep­combining combine­2) 
;; combine­2 = (lambda (painter1 painter2) ...) 
(lambda (painter n) 

((repeated 
fill­in­missing­expression 
n) 
painter))) 

where repeated is given by: 

(define (repeated f n) 
(cond ((= n 0) identity) 

((= n 1) f) 
(else (compose f (repeated f (­ n 1)))))) 

Show that you can indeed define right­split using your procedure, and give an analogous defini­
tion of up­split. 



10 6.090, Fall Semester, 1996­97—Problem Set 4 

Lab exercise 9 Once you have keep­combining, you can use it to define lots of recursive means 
of combination. For example, 

(define nest­diamonds 
(keep­combining 

(lambda (p1 p2) (superpose p1 (diamond p2))))) 
\null 
(nest­diamonds fovnder 4) 

Invent some variations of your own. Turn in the code and one or two sample pictures. 

Lab exercise 10: The procedures you have implemented give you a wide choice of things to 
experiment with. Invent some new means of combination, both simple ones like beside and complex 
higher­order ones like keep­combining and see what kinds of interesting images you can create. 
Turn in the code and one or two figures. 

Contest (Optional) Hopefully, you generated some interesting designs in doing this assignment. 
If you wish, you can enter printouts of your best designs in the 6.001 PS3 design contest. Turn 
in your design collection together with your homework, but stapled separately, and make sure your 
name is on the work. For each design, show the expression you used to generate it. Designs will 
be judged by the 6.001 staff and other internationally famous art critics, and fabulous prizes will 
be awarded in lecture. There is a limit of five entries per student. Make sure to turn in not only 
the pictures, but also the procedure(s) that generated them. 

How much time did you spend on this homework assignment? Report separately time spent before 
going to lab and time spent in the 6.001 lab. 

If you cooperated with other students working this problem set please indicate their names on 
your solutions. As you should know, as long as the guidelines described in the 6.001 Policy on 
Cooperation handout are followed, such cooperation is allowed and encouraged. 


