
Lecture 18:
 
Primer on Ray Tracing Techniques
 

6.172: Performance Engineering of Software 
 
Systems
 

Joshua Slocum 

November 16, 2010 




A Little Background 

●Image rendering technique 
●Simulate rays of light - “ray casting” 
●Capacity for photorealism 
●“Embarrassingly” parallel 
●Your final project! 

This photograph is in the public domain, and available here: 
http://en.wikipedia.org/wiki/File:Glasses_800_edit.png. 

http://en.wikipedia.org/wiki/File:Glasses_800_edit.png


The Final Project
 

●Groups of 2-3 
●We give you a working ray tracer; you make it 
go fast 
●Lots of opportunities for optimization 

• Extreme parallelism 
• Algorithmic improvements 
• And others 



Two Built-in Scenes
 

./raytracer -s1 ./raytracer -s2
 



What You Can't Do
 

●Change the parameters defined in config.h 
● We will write over it when testing 

● Compromise the functionality of the raytracer. 
● We may render other scene with your raytracer to 

make sure it still works properly 

● Change the behavior of the code based on 
command line arguments 



Rendering 
●Model a scene with objects 
●Project the scene onto pixel grid 

Camera 

Image 

Scene 



Ray Casting 
●Cast rays from the camera through each pixel 
●Find intersection with the closest object 
●Shade pixel with object's color 

Camera 

Image 

Scene 



Ray casting
 

Very little detail 
•Illumination is constant 
•No reflections or refractions 



Recursive casting: ray tracing 
●Improved shading technique 
●Recursively cast rays to simulate optical effects: 

• Cast rays at light sources to detect shadows 
• Trace rays to see reflection 
• Trace rays to see refraction 

●Must limit recursion depth Shadow ray 
Reflected ray 
Refracted ray 



Improved lighting
 
Calculate illumination of diffuse surfaces based 
 

on distance from light sources
 
●Simulate effects of direct 
illumination on diffuse materials 
●Cast a shadow ray from 
intersection point to each light 
source 
●Amount of illumination based 
on relative position of light and 
intersection 
●If a shadow ray intersects an 
object before reaching the light 
source, no illumination from 
that source (e.x. point B) 



Soft shadows
 

Shadows from area lights are 
“soft” on the edges 

Solution: cast multiple 
shadow rays per light source 



Optical Effects
 

Reflect rays off of 
specular (shiny) objects 

Refract rays through 
refractive (transparent) 
objects using Snell's Law 



Global illumination 

Notice the black 
ceiling and shadows! 

Diffuse objects don't 
really absorb all light; 
they scatter some of 
it. 



Scattering 

Could use random 
sampling (Monte Carlo 
method) 

Recursively sample 
multiple reflected rays in 
random directions 

Tracing backwards results 
in exponential search 

No guarantee that any 
particular branch will ever 
reach a light source 



More Photon Mapping 
Like with caustics, but in all 
directions 

When photons hit a diffuse 
surface, some energy is 
absorbed, and some is 
reflected 

Photons “bounce” until 
completely absorbed -
expensive 

Remember each bounce in 
photon map 



Hybridized Method 

Photons will not be evenly 
distributed unless many are 
simulated – too costly 

Uneven distribution results 
in blotchiness 

Smooth using Monte Carlo 
Method 



The Irradiance Cache
 
●Finding indirect illumination is still expensive 
●In some situations, interpolation is likely to be very 
accurate 
●While rendering, cache results of sampling and 
interpolate when possible 
●A cached irradiance calculation can be used to 
interpolate results for nearby points with similar normal 
vectors. 
●The icache is thus built while rendering occurs. 



The Irradiance Cache
 

Green dots are points 
where samples were 
cached. 

Note that caching is 
most frequent where 
normal vectors are 
changing. 



Caustics
 
Refractive objects often create 
patterns of bright and dark by 
focusing light. 

Cast rays from light towards 
refractive objects to simulate 
the paths of photons 

Trace rays until they hit a 
diffuse surface; store hits in a 
photon map 



Rendering With a Photon Map 

When rendering, the luminance from caustics is based on 
how many photons are nearby on the photon map 



Putting it All Together
 



Code Overview - Classes
 

●SceneObject	 ●Raytracer 
●	 Inherited by Square, Cube, 

● Contains “main”
Sphere, DisplacedSurface
 
● 

● Each object has its own ray Methods for construction of 

intersection method scene space 
●	 Methods for rendering 

scene 



Code Overview - Classes 


●LightSource 
● Base class 

● SquarePhotonLight 
● Used in both scenes 
●	 Contains seperate methods 

for each type of 
illumination 

●ICache 
●	 Contains methods for 

constructing the ICache 
one sample at a time 

●	 Use find() to get illuminance 
at a certain point 



Execution (high level)
Raytracer::main() { 

Parse command line args 
Construct scene to be rendered 
for each light source: 

light.tracePhotons() //construct global/caustic photon maps 
Render 

} 

Raytracer::render() { 
for each pixel cast ray:
 

Find nearest intersection
 
computeShading(ray) 
 
//cast recursive rays and sum up total illumination
 

} 



Execution (high level)
 
SquareLightSource::tracePhotons() { 

//global illumination 
while (i< global_num) 

cast ray in random direction
 
//bounce each ray until it is absorbed
 
while ray power is non-negligible
 

If ray.intersection.mat->isDiffuse() 
Store intersection in photon map 
Decrease ray power 
chance of diffuse reflection in random direction 
i++ 

Chance of refraction/reflection/absorption of ray as 
appropriate for non-diffuse mats 

} 



Execution (high level)
 
SquareLightSource::tracePhotons() { 

//caustic illumination 
while (i< caustic_num) 

cast ray in random direction 
//bounce each ray until it is absorbed or hits a diffuse mat 
while(1) 

If ray.intersection.mat->isDiffuse() 
Store intersection in photon map 
I++ 
break 

Chance of refraction/reflection/absorption of ray as 
appropriate for non-diffuse mats 

} 



Resources
 
More in depth explanations of the math and concepts 

behind ray tracing can be found at: 
●http://www.cs.unc.edu/~rademach/xroads-RT/RTarticle.html 
(a good introduction to some of the basic concept and math) 

●http://www.codermind.com/articles/Raytracer-in-C++-Introduction-
What-is-ray-tracing.html 
(also a good introduction, and covers some more advanced concepts, too) 

●http://www.cs.mtu.edu/~shene/PUBLICATIONS/2005/photon.pdf 
(A good explanation of photon mapping, with some nice pictures, too) 

●*Note: there are many different variations of the algorithms used for ray tracing. The 
implementations found in the final project may differ from those you find in these or 
other resources. 

http://www.cs.unc.edu/~rademach/xroads-RT/RTarticle.html
http://www.cs.mtu.edu/~shene/PUBLICATIONS/2005/photon.pdf
http://www.codermind.com/articles/Raytracer-in-C++-Introduction-What-is-ray-tracing.html


 

MIT OpenCourseWare
http://ocw.mit.edu 

6.172 Performance Engineering of Software Systems 
Fall 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	cs2.pdf
	Slide 15




