
How TokuDB Fractal TreeTM Indexes Work


Bradley C. Kuszmaul


Guest Lecture in MIT 6.172 Performance Engineering, 18 November 2010.


6.172 —How Fractal Trees Work 1 



My Background

• I’m an MIT alum: 

MIT Degrees = 2 × S.B + S.M. + Ph.D. 
• I was a principal architect of the


Connection Machine CM-5 super­

computer at Thinking Machines.


• I was Assistant Professor at Yale. 
• I was Akamai working on network mapping and


billing.

• I am research faculty in the SuperTech group,


working with Charles.

6.172 —How Fractal Trees Work 2 



Tokutek

A few years ago I started collaborating with Michael 
Bender and Martin Farach-Colton on how to store data 
on disk to achieve high performance. 

We started Tokutek to commercialize the research. 

6.172 —How Fractal Trees Work 3 



I/O is a Big Bottleneck


Disk

Sensor

Sensor

Sensor

Sensor

Query

Query

Query

per second

Millions of data

elements arrive
Query recently

arrived data

using indexes.

Systems include 
sensors and 
storage, and 
want to perform 
queries on 
recent data. 

6.172 —How Fractal Trees Work 4 



The Data Indexing Problem


• Data arrives in one order (say, sorted by the time of 
the observation). 
• Data is queried in another order (say, by URL or 

location). 

Disk

Sensor

Sensor

Sensor

Sensor

Query

Query

Query

per second

Millions of data

elements arrive
Query recently

arrived data

using indexes.

6.172 —How Fractal Trees Work 5 



Why Not Simply Sort?


Data Sorted by Time

Sort

Data Sorted by URL

This is what data • 
warehouses do. 

• The problem is that you 
must wait to sort the data 
before querying it: 
typically an overnight 
delay. 

The system must maintain data in (effectively) several 
sorted orders. This problem is called maintaining 
indexes. 
6.172 —How Fractal Trees Work 6 



B-Trees are Everywhere 

B-Trees show up in 
database indexes (such 
as MyISAM and 
InnoDB), file systems 
(such as XFS), and many 
other storage systems. 

6.172 —How Fractal Trees Work 7 



B-Trees are Fast at Sequential Inserts

B In Memory 

B B 

· · · 

· · · 

Insertions are 
into this leaf node 

• One disk I/O per leaf (which contains many rows).

• Sequential disk I/O. 
• Performance is limited by disk bandwidth. 

6.172 —How Fractal Trees Work 8 



B-Trees are Slow for High-Entropy Inserts

B In Memory 

B B 

· · · 

· · · 

• Most nodes are not in main memory. 
• Most insertions require a random disk I/O. 
• Performance is limited by disk head movement. 
• Only 100’s of inserts/s/disk (≤ 0.2% of disk


bandwidth).


6.172 —How Fractal Trees Work 9 



New B-Trees Run Fast Range Queries 
B 

B B 

· · · 

· · · 

Range Scan 

• In newly created B-trees, the leaf nodes are often 
laid out sequentially on disk. 
• Can get near 100% of disk bandwidth. 
• About 100MB/s per disk. 

6.172 —How Fractal Trees Work 10 



Aged B-Trees Run Slow Range Queries

B 

B B 

· · · 

· · · · · · 

Leaf Blocks Scattered Over Disk 

• In aged trees, the leaf blocks end up scattered over 
disk. 
• For 16KB nodes, as little as 1.6% of disk


bandwidth.

• About 16KB/s per disk. 

6.172 —How Fractal Trees Work 11 



• Looking up anything requires a table scan.

Append-to-file Beats B-Trees at Insertions

Here’s a data structure that is very fast for insertions: 

5 4 2 7 9 4 

Write next key here 

Write to the end of a file.


Pros: 
• Achieve disk bandwidth even for random keys. 

Cons: 

6.172 —How Fractal Trees Work 12 



Append-to-file Beats B-Trees at Insertions

Here’s a data structure that is very fast for insertions: 

5 4 2 7 9 4 

Write next key here 

Write to the end of a file.


Pros: 
Achieve disk bandwidth even for random keys. • 

Cons: 
Looking up anything requires a table scan. • 

6.172 —How Fractal Trees Work 13 



Fractal Tree Good Good Good

Yes, Fractal Trees!

A Performance Tradeoff?

Structure Inserts Point Queries Range Queries 
B-Tree Horrible Good Good (young) 
Append Wonderful Horrible Horrible 

• B-trees are good at lookup, but bad at insert. 
• Append-to-file is good at insert, but bad at lookup.

• Is there a data structure that is about as good as a 

B-tree for lookup, but has insertion performance 
closer to append? 

6.172 —How Fractal Trees Work 14 



A Performance Tradeoff?

Structure Inserts Point Queries Range Queries 
B-Tree Horrible Good Good (young) 
Append Wonderful Horrible Horrible 
Fractal Tree Good Good Good 
• B-trees are good at lookup, but bad at insert. 
• Append-to-file is good at insert, but bad at lookup.

• Is there a data structure that is about as good as a 

B-tree for lookup, but has insertion performance 
closer to append? 

Yes, Fractal Trees! 

6.172 —How Fractal Trees Work 15 



An Algorithmic Performance Model 
To analyze performance we use the Disk-Access 
Machine (DAM) model. [Aggrawal, Vitter 88] 

• Two levels of memory. 

• Two parameters: block size B, and

memory size M.


• The game: Minimize the number

of block transfers. Don’t worry

about CPU cycles.


6.172 —How Fractal Trees Work 16 

© Source unknown. All rights reserved. This content is excluded
from our Creative Commons license. For more information,
see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse


Theoretical Results

Structure Insert Point Query � � � � 
B-Tree O 

log N 
log B � � 

O 
logN 
log B � � 

Append O 
1 
B 

O 
N 
B � � � � 

log N logN
Fractal Tree O O


B1−ε ε log B1−ε


6.172 —How Fractal Trees Work 17 



� � � �


� � � �


Example of Insertion Cost


1 billion 128-byte rows. N = 230; log(N) = 30.• 
• 1MB block holds 8192 rows. B = 8192; logB = 13.


logN 30

B-Tree: O 

log B 
= O 

13 
≈ 3 

Fractal Tree: O 
logN 

= O 
30 ≈ 0.003.

B 8192 

Fractal Trees use << 1 disk I/O per insertion. 

6.172 —How Fractal Trees Work 18 



A Simplified Fractal Tree


5 10 

3 6 8 12 17 23 26 30 

• log N arrays, one array for 
each power of two. 

• Each array is completely 
full or empty. 

• Each array is sorted. 

6.172 —How Fractal Trees Work 19 



Example (4 elements)

If there are 4 elements in our fractal tree, the structure 
looks like this: 

23 30 12 17 

6.172 —How Fractal Trees Work 20 



If there are 10 elements in our fractal tree, the 
structure might look like this: 

5 10 

3 6 8 12 17 23 26 30 

But there is some freedom. 
• Each array is full or empty, so the 2-array and the


8-array must be full.

• However, which elements go where isn’t


completely specified.


6.172 —How Fractal Trees Work 21 



Searching in a Simplified Fractal Tree

• Idea: Perform a binary


search in each array.


5 10 • Pros: It works. It’s faster

than a table scan.


3 6 8 12 17 23 26 30 Cons: It’s slower than a
• 
B-tree at O(log2 N) block 
transfers. 

Let’s put search aside, and consider insert. 

6.172 —How Fractal Trees Work 22




Inserting in a Simplified Fractal Tree


5 10 

3 6 8 12 17 23 26 30 

Add another array of each size for temporary storage. 

At the beginning of each step, the temporary arrays 
are empty. 

6.172 —How Fractal Trees Work 23 



Insert 15
To insert 15, there is only one place to put it: In the
1-array.

5 10

3 6 8 12 17 23 26 30

15

6.172 —How Fractal Trees Work 24



Insert 7
To insert 7, no space in the 1-array. Put it in the temp
1-array.

5 10

3 6 8 12 17 23 26 30

15 7

Then merge the two 1-arrays to make a new 2-array.

5 10

3 6 8 12 17 23 26 30

7 15

6.172 —How Fractal Trees Work 25



Not done inserting 7

5 10

3 6 8 12 17 23 26 30

7 15

Must merge the 2-arrays to make a 4-array.

3 6 8 12 17 23 26 30

10 155 7

6.172 —How Fractal Trees Work 26



An Insert Can Cause Many Merges


9 5 10 2 18 33 40 3 6 8 12 17 23 26 30 

31 

9 5 10 2 18 33 40 3 6 8 12 17 23 26 30 

9 31 

5 10 2 18 33 40 3 6 8 12 17 23 26 30 

5 9 10 31 

2 18 33 40 3 6 8 12 17 23 26 30 

2 5 9 10 18 31 33 40 

3 6 8 12 17 23 26 30 

2 3 5 6 8 9 10 12 17 18 23 26 30 31 33 40 

6.172 —How Fractal Trees Work 27 



• � � 

Analysis of Insertion into Simplified

Fractal Tree


• Cost to merge 2 arrays of size 
X is O(X/B) block I/Os. 

5 7 10 15 
Merge is very I/O efficient. 3 6 8 12 17 23 26 30 

• Cost per element to merge is O(1/B) since O(X) 
elements were merged.

Max # of times each element is merged is O(log N).


log N
Average insert cost is O .• 

B 
6.172 —How Fractal Trees Work 28




Improving Worst-Case Insertion
Although the average cost of a merge is low,
occasionally we merge a lot of stuff.

3 6 8 12 17 23 26 30 4 7 9 19 20 21 27 29

Idea: A separate thread merges arrays. An insert
returns quickly.

Lemma: As long as we merge Ω(logN) elements for
every insertion, the merge thread won’t fall behind.

6.172 —How Fractal Trees Work 29



Speeding up Search


At log2 N, search is too expensive.

Now let’s shave a factor of log N.


3 6 8 12 17 23 26 30 

5 7 10 15 

The idea: Having searched an array for a row, we 
know where that row would belong in the array. We 
can gain information about where the row belongs in 
the next array 

6.172 —How Fractal Trees Work 30 



Forward Pointers

9 Each element gets a forward

2 14 pointer to where that element

5 7 13 25 goes in the next array using

3 6 8 12 17 23 26 30 Fractional Cascading. [Chazelle, Guibas 1986] 

If you are careful, you can arrange for forward 
pointers to land frequently (separated by at most a 
constant). Search becomes O(log N) levels, each 
looking at a constant number of elements, for 
O(log N) I/Os. 

6.172 —How Fractal Trees Work 31




Industrial-Grade Fractal Trees

A real implementation, like TokuDB, must deal with 
• Variable-sized rows; 
• Deletions as well as insertions; 
• Transactions, logging, and ACID-compliant crash


recovery;

• Must optimize sequential inserts more; 
• Better search cost: O(logB N), not O(log2 N); 
• Compression; and 
• Multithreading. 

6.172 —How Fractal Trees Work 32 



iiBench Insert Benchmark


iiBench was developed by us and Mark Callaghan to

measure insert performance.

Percona took these measurements about a year ago.

6.172 —How Fractal Trees Work 33 



iiBench on SSD


TokuDB on rotating disk beats InnoDB on SSD. 

6.172 —How Fractal Trees Work 34 



Disk Size and Price Technology Trends


• SSD is getting cheaper. 
• Rotating disk is getting cheaper faster. Seagate


indicates that 67TB drives will be here in 2017.

• Moore’s law for silicon lithography is slower over 

the next decade than Moore’s law for rotating disks. 

Conclusion: big data stored on disk isn’t going away

any time soon.

Fractal Tree indexes are good on disk.

One cannot simply indexes in main memory. One

must use disk efficiently.


6.172 —How Fractal Trees Work 35 



Speed Trends


• Bandwidth off a rotating disk will hit about

500MB/s at 67TB.

• Seek time will not change much. 

Conclusion: Scaling with bandwidth is good. Scaling 
with seek time is bad. 

Fractal Tree indexes scale with bandwidth. 

Unlike B-trees, Fractal Tree indexes can consume 
many CPU cycles. 

6.172 —How Fractal Trees Work 36 



Power Trends


• Big disks are much more power efficient per byte 
stored than little disks. 
• Making good use of disk bandwidth offers further 

power savings. 

Fractal Tree indexes can use 1/100th the power of 
B-trees. 

6.172 —How Fractal Trees Work 37 



CPU Trends


• CPU power will grow dramatically inside servers

over the next few years. 100-core machines are

around the corner. 1000-core machines are on the

horizon.

• Memory bandwidth will also increase. 
• I/O bus bandwidth will also grow. 

Conclusion: Scale-up machines will be impressive. 

Fractal Tree indexes will make good use of cores. 

6.172 —How Fractal Trees Work 38 



The Future


• Fractal Tree indexes dominate B-trees theoretically.

• Fractal Tree indexes ride the right technology 

trends. 
• In the future, all storage systems will use Fractal 

Tree indexes. 

6.172 —How Fractal Trees Work 39 



MIT OpenCourseWare
http://ocw.mit.edu 

6.172 Performance Engineering of Software Systems 
Fall 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



