
Basic Vision

January 5, 2005 




Agenda


� Color and colorspaces 
� Numbers and Java 
� Feature detection 



What are Colors? 

� Frequencies are one dimensional…


� But human 
perception of color 
is not! 

http://www2.ncsu.edu/scivis/lessons/colormodels/color_models2.html 



Humans and Vision


� We use cones to detect red, green, and blue 
� So computer monitors use the same, with 

one byte per channel (RGB). 
� image 640x480 = 900 KB ! 
� computers can cheat… 

� …like our cameras: 
interpolate pixel values 



Colorspaces


� RGB good for light 


� CYMK good for pigment wikipedia 

… but both mix color, tint, and brightness 



Maslab Colorspace: HSV 

Saturation (amount 

© wikipedia 

Value (amount of light 

� Hue (color):

� 

of color)

� 

and dark) 



Using the colorspace


� We provide the code to convert to HSV 
� For hue: 360 degrees mapped to 0 to 255 
� Red is both 0 and 255! 
� White is low saturation, but can have any 

hue. 
� Black is high value, but can have any hue. 



Tips on Differentiating Colors


� Globally define thresholds 
� Self-calibrate for different lights 
� Use the gimp/bot client on real images 



How HSV values are stored


� Uses Hexadecimal (base 16) 
� 1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10,11,12… 
� 0x12 = 18 

� A color is four bytes = 8 hexadecimal 

numbers

� Alpha

� Hue

� Saturation

� Value




Manipulating HSV values


� Use masks to pick out parts: 
� 0x12345678 & 0x00FF0000 = 0x00340000 

� Shift to move parts around: 
� 0x12345678 >> 8 = 0x00123456 

� Example: hue = (X >> 16) & 0xFF 



A note on java…


� All java types are signed

� A byte ranges from –128 to 127 
� Coded in two’s complement: to change sign, 


flip every bit and add one 
� Don’t forget higher order bits 

� (int) 0x0000FF00 = (int) 0xFF00 
� (int) ((byte) 0xFF) = (int) 0xFFFFFFFF 

� Watch out for shifts 
� 0xFD000000 >> 8 = 0xFFFD0000 



Example


� How about


int v = image.getPixel(25,25); // v = 0x8AC12390 
byte hue = (v >> 16) & 0xFF //hue = 0xC1 
if (hue > 200) 

foundRedBall();




Solution


� Use


int v = image.getPixel(25,25); // v = 0x8AC12390 
int hue = (v >> 16) & 0xFF //hue = 0xC1 
if (hue > 200) 

foundRedBall();




Performance…


� Getting an image performs a copy

� Int[] = bufferedImage.getRGB(…) 


� Getting a pixel performs a multiplication 
� int v = bufferedImage.RGB(x,y) 
� offset = y*width + x 

� Memory in rows, not columns…so go 

across rows and then down columns




Feature Detection… 
and other Concepts




Maslab Features


� Red balls 
� Yellow Goals 
� Blue line 
� Blue ticks 
� Bar codes 



Blue line ideas


� Search for ‘n’ wall-blue pixels in a column 
� Make sure there’s wall-white below? 
� Candidate voting 

� in each column, list places where you think 

line might be 

� find shortest left to 
right path through 
candidates 



Bar code ideas


� Look for green and black


� Is there not-white under the blue line?


� Check along a column to determine 

colors 

� RANdom SAmple Consensus 
(RANSAC) 
� Pick random pixels within bar code 
� Are they black or green? 



Finding a single color object


� Matched filter: convolve the image with a 
matched filter 
� compuatationally expensive 
� don’t know the scale 



Other things to try


� Look for a red patch 
� Set center to current coordinates 
� Loop: 

� Find the new center based on 
pixels within d of the old center 

� Enlarge d and recompute 
� Stop when increasing d doesn’t 

add enough red pixels 



Or try fitting a rectangle


� Scan image for a yellow patch 
� In each direction, loop: 

� Make rectangle bigger 
� If it doesn’t add enough new 

yellow pixels, then stop 



Estimating distance


� Closer objects are bigger

� Closer objects are lower




Feature-based processing


� Image processing for navigation 
� In each frame, list ‘corners’ – such as the 

blue tick marks 
� Match corners from one image to the next 
� Estimate the rigid 3D transformations to 

that best map the corners




Reminders


� Basics to get you started 

� (cool advanced stuff on Monday) 

� Try out your own algorithms! Have fun! 
� Must prune out silly solutions: 

� Noise

� Occlusion

� Acute viewing angles

� Overly large thresholds




Updates on Rules


�	 Robot must fit in tub


�	 There will be yellow field goal posts over the 
goals (above the yellow line) 

�	 Using outside parts: cost = how much it would 
cost another team to have similar functionality 

�	 Also, don’t forget to refresh wiki periodically 
during the day and check for updates 



Your job for today


� Finish yesterday’s activity 
� Read a barcode 
� Work on Friday’s check point 


