N

N

Control for Mobile Robots

/
7 AN

[A\ N m

/ \ N 9 N
/ \ < N\
/ \ L _

\ iy —
‘ &
—

Christopher Batten

Maslab IAP Robotics Course
January 7, 2005

M

<

Building a control system for
a mobile robot can be very challenging

N

N

Mobile robots are very complex and involve
many interacting components

Mechanical Electrical Software

Your control system must integrate these components
so that your robot can achieve the desired goal

GV

N

Building a control system for
a mobile robot can be very challenging

N

Just as you must carefully design your
robot chassis you must carefully design
your robot control system

 How will you debug and test your robot?
 What are the performance requirements?

e Can you easily improve aspects of your robot?
e Can you easily integrate new functionality?

Basic primitive
of a control system is a behavior

N

N

Behaviors should be well-defined,
self-contained, and independently testable

)

Turn right 90° Go forward until reach obstacle

<

Capture a ball Explore playing field

Key objective Is to compose behaviors
so as to achieve the desired goal

N

N

Outline

* High-level control system paradigms
— Model-Plan-Act Approach
— Behavioral Approach
— Finite State Machine Approach

* Low-level control loops
— PID controller for motor velocity
— PID controller for robot drive system

GV

N

Sensors

Plan

Model
Act

Model-Plan-Act Approach

Actuators
A 4

|

Environment

|

/Nl. Use sensor data to create model of the world

3. Execute the plan

2. Use model to form a sequence of behaviors
which will achieve the desired goal

N

Exploring the playing field
using model-plan-act approach

N

N

-

Red dot is the mobile robot
while the blue line is the mousehole

N

Exploring the playing field
using model-plan-act approach

N

N

/

P

/

-

Robot uses sensors to create local map of the
world and identify unexplored areas

N

Exploring the playing field
using model-plan-act approach

N

N

/

N~
\

// -

-

Robot moves to midpoint of
unexplored boundary

N

Exploring the playing field
using model-plan-act approach

N

N

/

\\

/. A

-

Robot performs a second sensor scan and
must align the new data with the global map

N

Exploring the playing field
using model-plan-act approach

N

N

7
NS e
/ \\ ~ n
I\ TN
/ \ AN N
7 \ > Bk
\ et —
/ N
hSERERRN

Robot continues to explore
the playing field

N

Exploring the playing field
using model-plan-act approach

N

N

/
210 e =

/ \ N m

/ \ . | N\
/ \ ~)
/ \ 7 .

\ iy —
/ \NA AL
—

Robot must recognize when it starts to
see areas which it has already explored

N

Finding a mousehole
using model-plan-act approach

N

N

-

Given the global map,
the goal is to find the mousehole

N

Finding a mousehole
using model-plan-act approach

N

N

Transform world into configuration space
by convolving robot with all obstacles

N

Finding a mousehole
using model-plan-act approach

N

N

Decompose world into convex cells

Trajectory within any cell is free of obstacles

N

Finding a mousehole
using model-plan-act approach

N

N

Connect cell edge midpoints and centroids to
get graph of all possible paths

N

Finding a mousehole
using model-plan-act approach

N

N

Use an algorithm (such as the A*
algorithm) to find shortest path to goal

N

Finding a mousehole
using model-plan-act approach

N

N

The choice of cell decomposition can
greatly influence results

N

Advantages and disadvantages
of the model-plan-act approach

N

e Advantages
— Global knowledge in the model enables optimization
— Can make provable guarantees about the plan

* Disadvantages
— Must implement all functional units before any testing
— Computationally intensive
— Requires very good sensor data for accurate models
— Models are inherently an approximation
— Works poorly in dynamic environments

Behavioral Approach

Behavior C

Behavior B

Sensors

Behavior A

\ 4

Actuators

|

Environment

|

As in simple biological systems,
behaviors directly couple sensors and actuators

Higher level behaviors are layered
on top of lower level behaviors

N

N

N

To illustrate the behavioral approach
we will consider a simple mobile robot

GV

Layering simple behaviors can create
much more complex emergent behavior

N

N

Cruise » Motors

Cruise behavior simply moves robot forward

Layering simple behaviors can create
much more complex emergent behavior

N

N

Subsumption N

Infrared —»

Avoid

Cruise

Y

@ Motors

Left motor speed inversely proportional to left IR range
Right motor speed inversely proportional to right IR range
If both IR < threshold stop and turn right 120 degrees

N

Layering simple behaviors can create
much more complex emergent behavior

N

N

'.Z.... e

Bump —» Escape =

Infrared —» Avoid

Cruise S Motors

Escape behavior stops motors,
backs up a few inches, and turns right 90 degrees

<

Layering simple behaviors can create
much more complex emergent behavior

N

N

Camera —» Track Ball = /

Bump —» Escape —

Infrared —» Avoid S

Cruise Motors

The track ball behavior adjusts the
motor differential to steer the robot towards the ball

N

Layering simple behaviors can create
much more complex emergent behavior

/A
N
Ball N -
i |
SWICh —> Hold Ball —— Bal 1 |
Gate — B
Camera —» Track Ball A /
..... '
Bump —» Escape —
Infrared —» Avoid S
Cruise Motors

Hold ball behavior simply closes ball gate
when ball switch is depressed

N

Layering simple behaviors can create
much more complex emergent behavior

N

N

> Track Goal SR)
Ball | ™ e
' |
Switeh —-1 - o1d Ball > Ball 11
Gate — >
Camera —» Track Ball P S
..... ' ’t/
Bump —» Escape e
Infrared —» Avoid S
Cruise Motors

The track goal behavior opens the ball gate and
adjusts the motor differential to steer the robot
towards the goal

N

Layering simple behaviors can create
much more complex emergent behavior

N

N

> Track Goal SR)
Ball | ™ e
' |
Switeh —-1 - o1d Ball > Ball 11
Gate — >
Camera —» Track Ball P S
..... ' ’t/
Bump —» Escape e
Infrared —» Avoid S
Cruise Motors

All behaviors are always running in parallel and an
arbiter is responsible for picking which behavior can
access the actuators

N

Advantages and disadvantages
of the behavioral approach

N

N

e Advantages
— Incremental development is very natural
— Modularity makes experimentation easier
— Cleanly handles dynamic environments

e Disadvantages
— Difficult to judge what robot will actually do
— No performance or completeness guarantees
— Debugging can be very difficult

Model-plan-act fuses sensor data,
while behavioral fuses behaviors

N

N

— | Behavior C | —
@ S || B .
> § 3|l < | — | Behavior B | —
— | Behavior A | —
\ 4 v
[Environment } [Environment }
Model-Plan-Act Behavioral

(Fixed Plan of Behaviors) (Layered Behaviors)

Model-plan-act fuses sensor data,
while behavioral fuses behaviors

N

N

ﬁ . pr—
—> | Behavior C
C 4—
22| — | Behavior B
— | Behavior A
—J NS —
\ 4 v
[Environment } [Environment }
Model-Plan-Act Behavioral

(Sensor Fusion) (Behavior Fusion)

GV

Finite State Machines offer another
alternative for combining behaviors

N

N

Fwd behavior moves robot
straight forward a given distance

TurnR TurnR behavior turns robot to the
(deg) right a given number of degrees

Finite State Machines offer another
alternative for combining behaviors

N

N

TurnR
(90°)

Each state is just a behavior and we
can easily link them together to create
an open loop control system

N

Finite State Machines offer another
alternative for combining behaviors

N

® e

TurnR
(90°)

Each state is just a behavior and we
can easily link them together to create
an open loop control system

<

Finite State Machines offer another
alternative for combining behaviors

N

N

TurnR
(90°)

Each state is just a behavior and we
can easily link them together to create
an open loop control system

<

Finite State Machines offer another
alternative for combining behaviors

N

N

TurnR
®

Each state is just a behavior and we
can easily link them together to create

an open loop control system

<

Finite State Machines offer another
alternative for combining behaviors

N

N

O

TurnR
(90°)

Since the Maslab playing field is
unknown, open loop control systems
have no hope of success!

N

Finite State Machines offer another
alternative for combining behaviors

C\
No Obstacle
Obstacle
Within 2ft O
No
Obstacle

Closed loop finite state machines use
sensor data as feedback to make
O state transitions

Obstacle
Within 2ft

N

Finite State Machines offer another
alternative for combining behaviors

C\
No Obstacle
Obstacle
Within 2ft O
No
Obstacle

Closed loop finite state machines use
sensor data as feedback to make
Q state transitions

Obstacle
Within 2ft

N

Finite State Machines offer another
alternative for combining behaviors

N

N

No Obstacle

Obstacle

Within 2ft O

No

Obstacle
Closed loop finite state machines use
sensor data as feedback to make
Q state transitions

Obstacle
Within 2ft

N

Finite State Machines offer another
alternative for combining behaviors

N

N

No Obstacle

Obstacle

Within 2ft O

No

Obstacle
Closed loop finite state machines use
sensor data as feedback to make
K) state transitions

Obstacle
Within 2ft

N

Finite State Machines offer another
alternative for combining behaviors

C\
No Obstacle
S |
Obstacle ”
Within 2ft O
No
Obstacle

Closed loop finite state machines use
sensor data as feedback to make
Q state transitions

Obstacle
Within 2ft

N

Implementing a
FSM in Java

N

No Obstacle

>

Obstacle
Within 2ft

)

Obstacle
Within 2ft

[/ State transitions
swtch (state) {

case States. Fwd 1 :
I f (distanceToObstacle() < 2)
state = TurnR 45;
br eak;

case States. TurnR 45 ;
I f (distanceToObstacle() >= 2)
state = FPwd_1;
br eak:

}

/|l State outputs
switch (state) {

case States. Fwd 1 :
noveFowar d(1); break;

case States. TurnR 45
turnR ght (45); break;

Implementing a
FSM in Java

e Implement behaviors
as parameterized
functions

* First switch
statement handles
state transitions

e Second switch
statement executes
behaviors associated
with each state

e Use enums for state
variables

/] State transitions
swtch (state) {

case ;

I f (distanceToObstacle() < 2)
state = TurnR 45;

br eak;

case ;

I f (distanceToObstacle() >= 2)
state = Fwd_1;

br eak:

}

/] State outputs
switch (state) {

case ;
noveFowar d(1); break;

case ;
turnR ght (45); break;

Finite State Machines offer another
alternative for combining behaviors

N

N

Turn
To
Open

Can also fold closed loop feedback
Into the behaviors themselves

<

Simple finite state machine
to locate red balls

N

S
Found
Wander Ba”
(20sec) | w -~

No Balls
Lost BaH
Ball
Align < 1ft
Ball
BaH
> 1ft

GV

N

Simple finite state machine
to locate red balls

S
Found
Wander Ba”
(20sec) | w -~

No Balls
Lost BaII
Ball
Align < 1ft
Ball
Ball
> 1ft

Obstacle < 2ft

GV

To debug a FSM control system
verify behaviors and state transitions

N
L/

No Balls

Found
Wander Ba”
(20sec) | w -~

Lost

What if robot
has trouble
correctly
approaching
the ball?

BaII
Ball
Align < 1ft
Ball
B

all
> 1ft

GV

N
L/

To debug a FSM control system
verify behaviors and state transitions

Found
Wander Ba”
(20sec) | w -~

No Balls

Lost

Independently
verify Align
Ball and Fwd

behaviors

BaII
Ball
Align < 1ft
Ball
BaII

> 1ft

GV

N

Improve FSM control system by replacing
a state with a better implementation

S
Found
Wander Ba”
(ZOsec)

No Balls
Lost

BaII
Ball
Align < 1ft
Ball
B

all
> 1ft

Could replace
random wander with

one which is biased
towards unexplored |
regions

GV

Improve FSM control system by replacing
a state with a better implementation

N

N

What about integrating camera code into wander
behavior so robot is always looking for red balls?

— Image processing Is bal| = fal se
time consuming so turn both nmotors on
- while (!'tinmeout and !ball)
mlght not Che_Ck for capture and process inmage
obstacles until too late if (red ball) ball = true
— Not checking camera read | R sensor
: if (IR < thresh)
when rotating Stop Mot or S
_ rotate 90 degrees
— Wander behavior turn both notors on
begins to become endif
monolithic endwhi | e
N
\V

Multi-threaded
finite state machine control systems

C\

Short IR
+ Bump Camera

C A /Obstacle\ & Image A
Sensors Compute
Thread Thread

Controller - N J
FSM
L)

Drive Motors

GV

Multi-threaded
finite state machine control systems

Drive Motors

C\

Short IR
+ Bump Camera

C A /Obstacle\ & Image A
Sensors Compute
Thread Thread

Controller - N J
FSM
\ /

GV

Multi-threaded
finite state machine control systems

N

N

— Stalk
Servo

Short IR Stalk
+ Bump Camera Sensors
é A /Obstacle\ C Image A /Sensor
Sensors Compute Stalk
Thread Thread Thread
Controller ~ — — J
FSM
\ J

Drive Motors

A
<

Multi-threaded
finite state machine control systems

N
N
Short IR Stalk
+ Bump Camera Sensors
4 A /Obstacle\ C Image A /Sensor
Sensors Compute Stalk [Stalk
Thread Thread Thread Servo
Controller ~ N TN)
FSM \ \l/ /
Mapping
Thread
\ J

'

Drive Motors

A
<

N

FSMs in Maslab

Finite state machines can combine the
model-plan-act and behavioral

approaches and are a good starting point
for your Maslab robotic control system

N

Outline

* High-level control system paradigms
— Model-Plan-Act Approach
— Behavioral Approach
— Finite State Machine Approach

* Low-level control loops
— PID controller for motor velocity
— PID controller for robot drive system

GV

Problem: How do we set
a motor to a given velocity?

N

N

Open Loop Controller

— Use trial and error to create
some kind of relationship
between velocity and voltage

— Changing supply voltage or
drive surface could result in
Incorrect velocity

Desired | Velocity Actual

Velocity To Volts —* Motor Velocity

GV

Problem: How do we set

a motor to a given velocity?

N

N

Closed Loop Controller

— Feedback is used to adjust the
voltage sent to the motor so
that the actual velocity equals
the desired velocity

— Can use an optical encoder to
measure actual velocity

Desired
Velocity ~

Controller

Adjusted
Voltage

>

Motor

Actual

> :
Velocity

GV

N

Step response
with no controller

N

Desired
Velocity

Velocity
To Volts

* Naive velocity to volts
 Model motor with
several differential

equations
e Slow rise time

e Stead-state offset

Actual
Motor Velocity
) ___________________________ ____________________________
1 I A S
P
G Q.81
9o
O 06
> é
04
02
0 1 2 3

Time (sec)

N

Step response

N

with proportional controller

Desired > Actuc'_il
locit Controller _ » Motor > Velocity
Velocity —» Adjusted V)
Vaes) Voltage (X) act
_ 1ol oy T ___________________________
X = Vdes + KP E(\/des B Vact) TN R N ER—
> — z
))) i 'C 08! |
e Big error big = big adj S
. . Q QBH o
e Faster rise time >
e Overshoot o4
o Stead_state Offset 02}
% 1 2 3
Time (sec)
NV

Step response
with proportional-derivative controller

Desired “» Actual
. Controller _ » Motor > Velocity
Velocity —» Adjusted V)
(Vaes) Voltage (X) adt
X :Vdes + er(t) _ KD de(t) 125
dt o e e
« When approaching desired g
velocity quickly, de/dt term 2
COunteraCtS prOpOrthnal /]
term SIOWlng adjustment ol ___________________________ ____________________________
 Faster rise time : > 3
e Reduces overshoot Time (sec)

Step response
with proportional-integral controller

g
N
- Actual
Desired >
loci Controller » Motor > VVelocity
Velocity —» Adjusted
V (Vact)
(Vies) Voltage (X)

X =V +Kpe(t) - K, [et) dt

=>
 Integral term eliminates 8
accumulated error Q 0§ |
o |ncreases Overshoot 04_
0.2i
0
0 1 2 3

Time (sec)

N

Step response
with PID controller

N

N

- Actual
Desired \—»
. Controller _ » Motor > Velocity
Velocity —» Adjusted
(V) (Vact)
des Voltage (X)

X =V + Koel)

2
+ K, j e(t) dt %
de(t) =

~ oy

Time (sec)

Choosing and tuning

a controller

N

N
Desired \—»

Velocity —» Controller

(\/des)

Adjusted
Voltage (X)

>

Motor

Actual

» Use the simplest controller which

achieves the desired result

e Tuning PID constants is very tricky,
especially for integral constants

o Consult the literature for more
controller tips and techniques

> Velocity
(Vact

Problem: How do we make
our robots go in a nice straight line?

N

N

20

Trajectory Motor Velocities vs Time
: 0.12
YR 1 SR
008l o
0.06L
004t - f e —
0.02¢vf E_ Left MEOtOI' Vel

| | — Right Motor Vel

90 0 10 20 o i > 3

Model differential drive with slight motor mismatch

With an open loop controller, setting motors to same velocity

results in a less than straight trajectory

N

Problem: How do we make
our robots go in a nice straight line?

N

N

60+

40+

20+

Trajectory
100 :
80 S

10 20

1.2

1t
0.8
0.6;

0.4
0.2
0

0 1 2 3

Motor Velocities vs Time

_____________________________ :— L eft M.otor Vel

— Right Motor Vel

With an independent PID controller for each motor,
setting motors to same velocity results in a straight trajectory
but not necessarily straight ahead!

<

Problem: How do we make
our robots go in a nice straight line?

N

N

* Need to couple drive motors

— Use low-level PID controllers X
to set motor velocity and a ’
high-level PID controller to
couple the motors

— Use one high-level PID |
controller which uses “
odometry or even image
processing to estimate error

N

Problem: How do we make
our robots go in a nice straight line?

N

N

Need to couple drive motors

— Use low-level PID controllers to
set motor velocity and a high-
level PID controller to couple
the motors

— Use one high-level PID
controller which uses odometry
Or even image processing to
estimate error

Take Away Points

N

* Integrating feedback into your control system
“closes the loop” and is essential for creating
robust robots

e Simple finite state machines make a solid
starting point for your Maslab control systems

e Spend time this weekend designing behaviors
and deciding how you will integrate these
behaviors to create your control system

