
Control for Mobile Robots

Christopher Batten
Maslab IAP Robotics Course

January 7, 2005

Building a control system for
a mobile robot can be very challenging

Mobile robots are very complex and involve

many interacting components

Mechanical Electrical Software

Your control system must integrate these components

so that your robot can achieve the desired goal

Building a control system for
a mobile robot can be very challenging

Just as you must carefully design your

robot chassis you must carefully design

your robot control system

• How will you debug and test your robot?
• What are the performance requirements?
• Can you easily improve aspects of your robot?

• Can you easily integrate new functionality?

Basic primitive

of a control system is a behavior

Behaviors should be well-defined,
self-contained, and independently testable

Turn right 90° Go forward until reach obstacle

Capture a ball Explore playing field

Key objective is to compose behaviors

so as to achieve the desired goal

Outline

• High-level control system paradigms

– Model-Plan-Act Approach
– Behavioral Approach
– Finite State Machine Approach

• Low-level control loops
– PID controller for motor velocity
– PID controller for robot drive system

Model-Plan-Act Approach

1. Use sensor data to create model of the world
2. Use model to form a sequence of behaviors

which will achieve the desired goal
3. Execute the plan

M
od

el

ActuatorsSensors

P
la

n

A
ct

Environment

Exploring the playing field

using model-plan-act approach

Red dot is the mobile robot
while the blue line is the mousehole

Exploring the playing field

using model-plan-act approach

Robot uses sensors to create local map of the
world and identify unexplored areas

Exploring the playing field

using model-plan-act approach

Robot moves to midpoint of
unexplored boundary

Exploring the playing field

using model-plan-act approach

Robot performs a second sensor scan and
must align the new data with the global map

Exploring the playing field

using model-plan-act approach

Robot continues to explore
the playing field

Exploring the playing field

using model-plan-act approach

Robot must recognize when it starts to
see areas which it has already explored

Finding a mousehole

using model-plan-act approach

Given the global map,
the goal is to find the mousehole

Finding a mousehole

using model-plan-act approach

Transform world into configuration space
by convolving robot with all obstacles

Finding a mousehole

using model-plan-act approach

Decompose world into convex cells
Trajectory within any cell is free of obstacles

Finding a mousehole

using model-plan-act approach

Connect cell edge midpoints and centroids to
get graph of all possible paths

Finding a mousehole

using model-plan-act approach

Use an algorithm (such as the A*
algorithm) to find shortest path to goal

Finding a mousehole

using model-plan-act approach

The choice of cell decomposition can
greatly influence results

Advantages and disadvantages

of the model-plan-act approach

• Advantages
– Global knowledge in the model enables optimization

– Can make provable guarantees about the plan

• Disadvantages
– Must implement all functional units before any testing
– Computationally intensive
– Requires very good sensor data for accurate models
– Models are inherently an approximation
– Works poorly in dynamic environments

Behavioral Approach

Sensors Actuators

As in simple biological systems,

behaviors directly couple sensors and actuators

Higher level behaviors are layered

on top of lower level behaviors

Environment

Behavior C

Behavior B

Behavior A

To illustrate the behavioral approach

we will consider a simple mobile robot

Ball Gate

Bump Switches

Infrared Rangefinders

Ball Detector Switch

Camera

Layering simple behaviors can create

much more complex emergent behavior

Motors

Cruise behavior simply moves robot forward

Cruise

Layering simple behaviors can create

much more complex emergent behavior

Infrared

S Motors

Left motor speed inversely proportional to left IR range
Right motor speed inversely proportional to right IR range

If both IR < threshold stop and turn right 120 degrees

Subsumption

Cruise

Avoid

Layering simple behaviors can create

much more complex emergent behavior

Escape

Infrared

Bump

S

S

Motors

Escape behavior stops motors,
backs up a few inches, and turns right 90 degrees

Cruise

Avoid

Layering simple behaviors can create

much more complex emergent behavior

Escape

ll

Infrared

Bump

Camera

S S

S

Cruise

Avoid

Track Ba

Motors

The track ball behavior adjusts the

motor differential to steer the robot towards the ball

Layering simple behaviors can create

much more complex emergent behavior

Escape

ll

ll

Infrared

Bump

Camera

Ball

S S

S

Ball
Gate

Cruise

Avoid

Track Ba

Hold BaSwitch

Motors

Hold ball behavior simply closes ball gate

when ball switch is depressed

Layering simple behaviors can create

much more complex emergent behavior

Escape

ll

ll

Track Goal

Infrared

Bump

Camera

Ball

S S S

S

S

Ball
Gate

Cruise

Avoid

Track Ba

Hold BaSwitch

Motors

The track goal behavior opens the ball gate and

adjusts the motor differential to steer the robot

towards the goal

Layering simple behaviors can create

much more complex emergent behavior

Escape

ll

ll

Track Goal

Infrared

Bump

Camera

Ball

S S S

S

S

Ball
Gate

Cruise

Avoid

Track Ba

Hold BaSwitch

Motors

All behaviors are always running in parallel and an

arbiter is responsible for picking which behavior can

access the actuators

Advantages and disadvantages
of the behavioral approach

• Advantages
– Incremental development is very natural
– Modularity makes experimentation easier

– Cleanly handles dynamic environments

• Disadvantages
– Difficult to judge what robot will actually do

– No performance or completeness guarantees
– Debugging can be very difficult

Model-plan-act fuses sensor data,

while behavioral fuses behaviors

M
od

el

P
la

n

A
ct

Environment

Model-Plan-Act

(Fixed Plan of Behaviors)

Behavioral
(Layered Behaviors)

Environment

Behavior C

Behavior B

Behavior A

Model-plan-act fuses sensor data,

while behavioral fuses behaviors

Environment

M
od

el

P
la

n

A
ct

Environment

Model-Plan-Act
(Sensor Fusion) (Behavior Fusion)

Behavior C

Behavior B

Behavior A

Behavioral

Finite State Machines offer another

alternative for combining behaviors

Fwd behavior moves robot
straight forward a given distance

Fwd
(dist)

TurnR
(deg)

TurnR behavior turns robot to the

right a given number of degrees

Finite State Machines offer another

TurnR
(90°)

alternative for combining behaviors

Fwd
(2ft)

Fwd
(2ft)

can easily link them together to create
Each state is just a behavior and we

an open loop control system

Finite State Machines offer another

TurnR
(90°)

alternative for combining behaviors

Fwd
(2ft)

Fwd
(2ft)

can easily link them together to create
Each state is just a behavior and we

an open loop control system

Finite State Machines offer another

TurnR
(90°)

alternative for combining behaviors

Fwd
(2ft)

Fwd
(2ft)

can easily link them together to create
Each state is just a behavior and we

an open loop control system

Finite State Machines offer another

TurnR
(90°)

alternative for combining behaviors

Fwd
(2ft)

Fwd
(2ft)

Each state is just a behavior and we
can easily link them together to create

an open loop control system

Finite State Machines offer another

TurnR
(90°)

alternative for combining behaviors

Fwd
(2ft)

Fwd
(2ft)

Since the Maslab playing field is
unknown, open loop control systems

have no hope of success!

Finite State Machines offer another

TurnR
(45°)

alternative for combining behaviors

Fwd
(1ft)

Closed loop finite state machines use
sensor data as feedback to make

state transitions

No Obstacle

Obstacle
Within 2ft

No
Obstacle

Obstacle
Within 2ft

Finite State Machines offer another

TurnR
(45°)

alternative for combining behaviors

Fwd
(1ft)

No Obstacle

Obstacle
Within 2ft

No
Obstacle

Obstacle
Within 2ft

Closed loop finite state machines use
sensor data as feedback to make

state transitions

Finite State Machines offer another

TurnR
(45°)

alternative for combining behaviors

Fwd
(1ft)

No Obstacle

Obstacle
Within 2ft

No
Obstacle

Obstacle
Within 2ft

Closed loop finite state machines use
sensor data as feedback to make

state transitions

Finite State Machines offer another

TurnR
(45°)

alternative for combining behaviors

Fwd
(1ft)

No Obstacle

Obstacle
Within 2ft

No
Obstacle

Obstacle
Within 2ft

Closed loop finite state machines use
sensor data as feedback to make

state transitions

Finite State Machines offer another

TurnR
(45°)

alternative for combining behaviors

Fwd
(1ft)

No Obstacle

Obstacle
Within 2ft

No
Obstacle

Obstacle
Within 2ft

Closed loop finite state machines use
sensor data as feedback to make

state transitions

Implementing a
FSM in Java

TurnR
(45°)

Fwd
(1ft)

No Obstacle

Obstacle
Within 2ft

// State transitions
switch (state) {

case States.Fwd_1 :
if (distanceToObstacle() < 2)

state = TurnR_45;
break;

case States.TurnR_45 :
if (distanceToObstacle() >= 2)

state = Fwd_1;
break;

}

// State outputs
switch (state) {

case States.Fwd_1 :
moveFoward(1); break;

case States.TurnR_45 :
turnRight(45); break;

}
Obstacle

Within 2ft

•
as parameterized
functions

•
statement handles
state transitions

•
statement executes
behaviors associated
with each state

•
variables

Implementing a
FSM in Java

// State transitions
switch (state) {

case States.Fwd_1 :
if (distanceToObstacle() < 2)

state = TurnR_45;
break;

case States.TurnR_45 :
if (distanceToObstacle() >= 2)

state = Fwd_1;
break;

}

// State outputs
switch (state) {

case States.Fwd_1 :
moveFoward(1); break;

case States.TurnR_45 :
turnRight(45); break;

}

Implement behaviors

First switch

Second switch

Use enums for state

Finite State Machines offer another

Turn
To

Open

alternative for combining behaviors

Fwd
Until
Obs

Can also fold closed loop feedback
into the behaviors themselves

Simple finite state machine
to locate red balls

Scan
360

Wander
(20sec)

Fwd
(1ft)

Align
Ball

TurnR

Stop

No Balls

Found
Ball

Lost
Ball Ball

< 1ft

Ball
> 1ft

Simple finite state machine
to locate red balls

Scan
360

Wander
(20sec)

Fwd
(1ft)

Align
Ball

TurnR

Stop

No Balls

Found
Ball

Lost
Ball Ball

< 1ft

Ball
> 1ft

Obstacle < 2ft

Obstacle < 2ft

To debug a FSM control system

verify behaviors and state transitions

Scan
360

Wander
(20sec)

Fwd
(1ft)

Align
Ball

TurnR

Stop

No Balls

Found
Ball

Lost
Ball Ball

< 1ft

Ball
> 1ft

What if robot
has trouble

correctly
approaching

the ball?

Obstacle < 2ft

To debug a FSM control system

verify behaviors and state transitions

Scan
360

Wander
(20sec)

Fwd
(1ft)

Align
Ball

TurnR

Stop

No Balls

Found
Ball

Lost
Ball Ball

< 1ft

Ball
> 1ftIndependently

verify Align
Ball and Fwd

behaviors

Obstacle < 2ft

Improve FSM control system by replacing

a state with a better implementation

Scan
360

Wander
(20sec)

Fwd
(1ft)

Align
Ball

TurnR

Stop

No Balls

Found
Ball

Lost
Ball Ball

< 1ft

Ball
> 1ft

Could replace
random wander with
one which is biased
towards unexplored

regions

Improve FSM control system by replacing
a state with a better implementation

What about integrating camera code into wander

behavior so robot is always looking for red balls?

– Image processing is

time consuming so

might not check for

obstacles until too late

– Not checking camera

when rotating

– Wander behavior

begins to become

monolithic

ball = false
turn both motors on
while (!timeout and !ball)
capture and process image
if (red ball) ball = true

read IR sensor
if (IR < thresh)

stop motors
rotate 90 degrees
turn both motors on

endif

endwhile

Multi-threaded

Obstacle
Sensors
Thread

Image
Compute
Thread

Controller
FSM

finite state machine control systems

Camera
Short IR
+ Bump

Drive Motors

Multi-threaded

Obstacle
Sensors
Thread

Image
Compute
Thread

Controller
FSM

finite state machine control systems

Camera
Short IR
+ Bump

Drive Motors

Multi-threaded

Sensor
Stalk

Thread

Obstacle
Sensors
Thread

Image
Compute
Thread

Controller
FSM

finite state machine control systems

Drive Motors

Camera
Short IR
+ Bump

Stalk
Servo

Stalk
Sensors

Mapping
Thread

Sensor
Stalk

Thread

Obstacle
Sensors
Thread

Image
Compute
Thread

Controller
FSM

Multi-threaded
finite state machine control systems

Drive Motors

Camera
Short IR
+ Bump

Stalk
Servo

Stalk
Sensors

FSMs in Maslab

for your Maslab robotic control system

Finite state machines can combine the

model-plan-act and behavioral

approaches and are a good starting point

Outline

• High-level control system paradigms

– Model-Plan-Act Approach
– Behavioral Approach
– Finite State Machine Approach

• Low-level control loops
– PID controller for motor velocity
– PID controller for robot drive system

Problem: How do we set
a motor to a given velocity?

Open Loop Controller
–

some kind of relationship
between velocity and voltage

–
drive surface could result in
incorrect velocity

MotorVelocity
To Volts

Desired
Velocity

Actual
Velocity

Use trial and error to create

Changing supply voltage or

Problem: How do we set

Controller

a motor to a given velocity?

Closed Loop Controller
–

voltage sent to the motor so
that the actual velocity equals
the desired velocity

–
measure actual velocity

MotorDesired
Velocity

Actual
VelocityAdjusted

Voltage

Feedback is used to adjust the

Can use an optical encoder to

Step response
with no controller

Time (sec)

V
el

oc
ity

•
•

several differential
equations

•
•

MotorVelocity
To Volts

Desired
Velocity

Actual
Velocity

Naive velocity to volts
Model motor with

Slow rise time
Stead-state offset

Step response

with proportional controller

Time (sec)

V
el

oc
ity

 ()actdesPdes VVKVX −⋅+=

•
•
•
•

Controller Motor
Desired
Velocity
(Vdes)

Actual
Velocity

(Vact)Adjusted
Voltage (X)

Big error big = big adj
Faster rise time
Overshoot
Stead-state offset

Step response

with proportional-derivative controller

Time (sec)

V
el

oc
ity

dt
KVX DPdes

)()(−+=

•

counteracts proportional
term slowing adjustment

•
•

Controller Motor
Desired
Velocity
(Vdes)

Actual
Velocity

(Vact)Adjusted
Voltage (X)

t de t e K

When approaching desired
velocity quickly, de/dt term

Faster rise time
Reduces overshoot

Step response

with proportional-integral controller

Time (sec)

V
el

oc
ity

 ∫−+= dtKKVX IPdes)()(

•
accumulated error

•

Controller Motor
Desired
Velocity
(Vdes)

Actual
Velocity

(Vact)Adjusted
Voltage (X)

t e t e

Integral term eliminates

Increases overshoot

Step response
with PID controller

Time (sec)

V
el

oc
ity

dt

K

K

VX

D

I

Pdes

)(

)(

)(

−

+

+=

∫

Controller Motor
Desired
Velocity
(Vdes)

Actual
Velocity

(Vact)Adjusted
Voltage (X)

t de

dt t e

t e K

Choosing and tuning
a controller

Controller Motor
Desired
Velocity
(Vdes)

Actual
Velocity

(Vact)Adjusted
Voltage (X)

• Use the simplest controller which
achieves the desired result

• Tuning PID constants is very tricky,
especially for integral constants

• Consult the literature for more

controller tips and techniques

Problem: How do we make

our robots go in a nice straight line?

Trajectory Motor Velocities vs Time

Model differential drive with slight motor mismatch
With an open loop controller, setting motors to same velocity

results in a less than straight trajectory

Problem: How do we make

our robots go in a nice straight line?

Trajectory Motor Velocities vs Time

With an independent PID controller for each motor,
setting motors to same velocity results in a straight trajectory

but not necessarily straight ahead!

Problem: How do we make

our robots go in a nice straight line?

• Need to couple drive motors

– Use low-level PID controllers

to set motor velocity and a

high-level PID controller to

couple the motors

– Use one high-level PID

controller which uses

odometry or even image

processing to estimate error

Problem: How do we make

our robots go in a nice straight line?

Need to couple drive motors

– Use low-level PID controllers to

set motor velocity and a high-

level PID controller to couple

the motors

error
angle

– Use one high-level PID

controller which uses odometry

or even image processing to

estimate error

Take Away Points

• Integrating feedback into your control system
“closes the loop” and is essential for creating
robust robots

• Simple finite state machines make a solid
starting point for your Maslab control systems

• Spend time this weekend designing behaviors
and deciding how you will integrate these
behaviors to create your control system

