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Building a control system for 
a mobile robot can be very challenging 

Mobile robots are very complex and involve 

many interacting components


Mechanical Electrical Software 

Your control system must integrate these components 

so that your robot can achieve the desired goal




Building a control system for 
a mobile robot can be very challenging 

Just as you must carefully design your 

robot chassis you must carefully design


your robot control system


• How will you debug and test your robot? 
• What are the performance requirements? 
• Can you easily improve aspects of your robot?


• Can you easily integrate new functionality? 



Basic primitive 

of a control system is a behavior 

Behaviors should be well-defined, 
self-contained, and independently testable 

Turn right 90° Go forward until reach obstacle


Capture a ball Explore playing field 



Key objective is to compose behaviors 

so as to achieve the desired goal 



Outline


• High-level control system paradigms

– Model-Plan-Act Approach 
– Behavioral Approach 
– Finite State Machine Approach 

• Low-level control loops 
– PID controller for motor velocity 
– PID controller for robot drive system




Model-Plan-Act Approach


1. Use sensor data to create model of the world 
2. Use model to form a sequence of behaviors 

which will achieve the desired goal 
3. Execute the plan 
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Exploring the playing field 

using model-plan-act approach 

Red dot is the mobile robot 
while the blue line is the mousehole 



Exploring the playing field 

using model-plan-act approach 

Robot uses sensors to create local map of the 
world and identify unexplored areas 



Exploring the playing field 

using model-plan-act approach 

Robot moves to midpoint of 
unexplored boundary 



Exploring the playing field 

using model-plan-act approach 

Robot performs a second sensor scan and 
must align the new data with the global map 



Exploring the playing field 

using model-plan-act approach 

Robot continues to explore 
the playing field 



Exploring the playing field 

using model-plan-act approach 

Robot must recognize when it starts to 
see areas which it has already explored 



Finding a mousehole

using model-plan-act approach 

Given the global map, 
the goal is to find the mousehole 



Finding a mousehole 

using model-plan-act approach 

Transform world into configuration space 
by convolving robot with all obstacles 



Finding a mousehole 

using model-plan-act approach 

Decompose world into convex cells 
Trajectory within any cell is free of obstacles 



Finding a mousehole 

using model-plan-act approach 

Connect cell edge midpoints and centroids to 
get graph of all possible paths 



Finding a mousehole 

using model-plan-act approach 

Use an algorithm (such as the A* 
algorithm) to find shortest path to goal 



Finding a mousehole 

using model-plan-act approach 

The choice of cell decomposition can 
greatly influence results 



Advantages and disadvantages 

of the model-plan-act approach


• Advantages 
– Global knowledge in the model enables optimization

– Can make provable guarantees about the plan 

• Disadvantages 
– Must implement all functional units before any testing 
– Computationally intensive 
– Requires very good sensor data for accurate models 
– Models are inherently an approximation 
– Works poorly in dynamic environments 



Behavioral Approach


Sensors Actuators 

As in simple biological systems, 

behaviors directly couple sensors and actuators


Higher level behaviors are layered 

on top of lower level behaviors


Environment 

Behavior C 

Behavior B 

Behavior A 



To illustrate the behavioral approach 

we will consider a simple mobile robot


Ball Gate


Bump Switches


Infrared Rangefinders


Ball Detector Switch


Camera 



Layering simple behaviors can create 

much more complex emergent behavior 

Motors 

Cruise behavior simply moves robot forward 

Cruise 



Layering simple behaviors can create 

much more complex emergent behavior 

Infrared 

S Motors 

Left motor speed inversely proportional to left IR range 
Right motor speed inversely proportional to right IR range 

If both IR < threshold stop and turn right 120 degrees 

Subsumption 

Cruise 

Avoid 



Layering simple behaviors can create 

much more complex emergent behavior 

Escape 

Infrared 

Bump 

S 

S 

Motors 

Escape behavior stops motors, 
backs up a few inches, and turns right 90 degrees 

Cruise 

Avoid 



Layering simple behaviors can create 

much more complex emergent behavior 

Escape 
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Motors 

The track ball behavior adjusts the 

motor differential to steer the robot towards the ball




Layering simple behaviors can create 

much more complex emergent behavior 
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Hold BaSwitch 

Motors 

Hold ball behavior simply closes ball gate 

when ball switch is depressed




Layering simple behaviors can create 

much more complex emergent behavior 
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The track goal behavior opens the ball gate and 

adjusts the motor differential to steer the robot 


towards the goal




Layering simple behaviors can create 

much more complex emergent behavior 

Escape 
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Track Goal 

Infrared 

Bump 
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All behaviors are always running in parallel and an 

arbiter is responsible for picking which behavior can 


access the actuators




Advantages and disadvantages 
of the behavioral approach 

• Advantages 
– Incremental development is very natural 
– Modularity makes experimentation easier

– Cleanly handles dynamic environments 

• Disadvantages 
– Difficult to judge what robot will actually do

– No performance or completeness guarantees 
– Debugging can be very difficult 



Model-plan-act fuses sensor data, 

while behavioral fuses behaviors
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Model-Plan-Act

(Fixed Plan of Behaviors)


Behavioral 
(Layered Behaviors) 

Environment 

Behavior C 

Behavior B 

Behavior A 



Model-plan-act fuses sensor data, 

while behavioral fuses behaviors


Environment 
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Environment 

Model-Plan-Act 
(Sensor Fusion) (Behavior Fusion) 

Behavior C 

Behavior B 

Behavior A 

Behavioral 



Finite State Machines offer another 

alternative for combining behaviors


Fwd behavior moves robot 
straight forward a given distance 

Fwd 
(dist) 

TurnR 
(deg) 

TurnR behavior turns robot to the 

right a given number of degrees




Finite State Machines offer another 


TurnR 
(90°) 

alternative for combining behaviors 

Fwd 
(2ft) 

Fwd 
(2ft) 

can easily link them together to create 
Each state is just a behavior and we 


an open loop control system
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Finite State Machines offer another 


TurnR 
(90°) 

alternative for combining behaviors 

Fwd 
(2ft) 

Fwd 
(2ft) 

Each state is just a behavior and we 
can easily link them together to create 

an open loop control system 



Finite State Machines offer another 


TurnR 
(90°) 

alternative for combining behaviors 

Fwd 
(2ft) 

Fwd 
(2ft) 

Since the Maslab playing field is 
unknown, open loop control systems 

have no hope of success! 



Finite State Machines offer another 


TurnR 
(45°) 

alternative for combining behaviors 

Fwd 
(1ft) 

Closed loop finite state machines use 
sensor data as feedback to make 

state transitions 

No Obstacle 

Obstacle 
Within 2ft 

No 
Obstacle 
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Finite State Machines offer another 
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Finite State Machines offer another 
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alternative for combining behaviors 
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Closed loop finite state machines use 
sensor data as feedback to make 

state transitions 



Implementing a 
FSM in Java 

TurnR 
(45°) 

Fwd 
(1ft) 

No Obstacle 

Obstacle 
Within 2ft 

// State transitions 
switch ( state ) { 

case States.Fwd_1 : 
if ( distanceToObstacle() < 2 ) 

state = TurnR_45; 
break; 

case States.TurnR_45 : 
if ( distanceToObstacle() >= 2 ) 

state = Fwd_1; 
break; 

} 

// State outputs 
switch ( state ) { 

case States.Fwd_1 : 
moveFoward(1); break; 

case States.TurnR_45 : 
turnRight(45); break; 

} 
Obstacle 

Within 2ft




• 
as parameterized 
functions 

• 
statement handles 
state transitions 

• 
statement executes 
behaviors associated 
with each state 

• 
variables 

Implementing a 
FSM in Java 

// State transitions 
switch ( state ) { 

case States.Fwd_1 : 
if ( distanceToObstacle() < 2 ) 

state = TurnR_45; 
break; 

case States.TurnR_45 : 
if ( distanceToObstacle() >= 2 ) 

state = Fwd_1; 
break; 

} 

// State outputs 
switch ( state ) { 

case States.Fwd_1 : 
moveFoward(1); break; 

case States.TurnR_45 : 
turnRight(45); break; 

} 

Implement behaviors 

First switch 

Second switch 

Use enums for state 



Finite State Machines offer another 


Turn 
To 

Open 

alternative for combining behaviors 

Fwd 
Until 
Obs 

Can also fold closed loop feedback 
into the behaviors themselves 



Simple finite state machine 
to locate red balls 
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Simple finite state machine 
to locate red balls

Scan
360

Wander
(20sec)

Fwd
(1ft)

Align
Ball

TurnR

Stop

No Balls

Found
Ball

Lost 
Ball Ball 

< 1ft

Ball 
> 1ft

Obstacle < 2ft



Obstacle < 2ft

To debug a FSM control system 

verify behaviors and state transitions 

Scan 
360 

Wander 
(20sec) 

Fwd 
(1ft) 

Align 
Ball 

TurnR 

Stop 

No Balls 

Found 
Ball 

Lost 
Ball Ball 

< 1ft 

Ball 
> 1ft 

What if robot 
has trouble 

correctly 
approaching 

the ball? 



Obstacle < 2ft

To debug a FSM control system 

verify behaviors and state transitions 

Scan 
360 

Wander 
(20sec) 

Fwd 
(1ft) 

Align 
Ball 

TurnR 

Stop 

No Balls 

Found 
Ball 

Lost 
Ball Ball 

< 1ft 

Ball 
> 1ftIndependently 

verify Align 
Ball and Fwd 

behaviors 



Obstacle < 2ft

Improve FSM control system by replacing 

a state with a better implementation 

Scan 
360 

Wander 
(20sec) 

Fwd 
(1ft) 

Align 
Ball 

TurnR 

Stop 

No Balls 

Found 
Ball 

Lost 
Ball Ball 

< 1ft 

Ball 
> 1ft

Could replace 
random wander with 
one which is biased 
towards unexplored 

regions 



Improve FSM control system by replacing 
a state with a better implementation 

What about integrating camera code into wander 

behavior so robot is always looking for red balls?


– Image processing is 

time consuming so 

might not check for 

obstacles until too late


– Not checking camera 

when rotating


– Wander behavior 

begins to become 

monolithic


ball = false 
turn both motors on 
while ( !timeout and !ball ) 
capture and process image 
if ( red ball ) ball = true 

read IR sensor 
if ( IR < thresh ) 

stop motors 
rotate 90 degrees 
turn both motors on 

endif 

endwhile 



Multi-threaded 


Obstacle 
Sensors 
Thread 

Image 
Compute 
Thread 

Controller 
FSM 

finite state machine control systems 

Camera 
Short IR 
+ Bump 

Drive Motors
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Multi-threaded 


Sensor 
Stalk 

Thread 

Obstacle 
Sensors 
Thread 

Image 
Compute 
Thread 

Controller 
FSM 

finite state machine control systems 

Drive Motors 

Camera 
Short IR 
+ Bump 

Stalk 
Servo 

Stalk 
Sensors 



Mapping
Thread

Sensor
Stalk

Thread

Obstacle 
Sensors
Thread

Image
Compute
Thread

Controller
FSM

Multi-threaded 
finite state machine control systems

Drive Motors

Camera
Short IR 
+ Bump

Stalk 
Servo

Stalk
Sensors



FSMs in Maslab


for your Maslab robotic control system 

Finite state machines can combine the 

model-plan-act and behavioral 


approaches and are a good starting point 




Outline


• High-level control system paradigms

– Model-Plan-Act Approach 
– Behavioral Approach 
– Finite State Machine Approach 

• Low-level control loops 
– PID controller for motor velocity 
– PID controller for robot drive system 



Problem: How do we set 
a motor to a given velocity? 

Open Loop Controller 
– 

some kind of relationship 
between velocity and voltage 

– 
drive surface could result in 
incorrect velocity 

MotorVelocity 
To Volts 

Desired 
Velocity 

Actual 
Velocity 

Use trial and error to create 

Changing supply voltage or 



Problem: How do we set 


Controller 

a motor to a given velocity? 

Closed Loop Controller 
– 

voltage sent to the motor so 
that the actual velocity equals 
the desired velocity 

– 
measure actual velocity 

MotorDesired 
Velocity 

Actual 
VelocityAdjusted 

Voltage 

Feedback is used to adjust the 

Can use an optical encoder to 



Step response 
with no controller 
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• 
• 

several differential 
equations 

• 
• 

MotorVelocity 
To Volts 

Desired 
Velocity 

Actual 
Velocity 

Naive velocity to volts 
Model motor with 

Slow rise time 
Stead-state offset 



Step response 

with proportional controller 
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Controller Motor
Desired 
Velocity 
(Vdes) 

Actual 
Velocity 

(Vact)Adjusted 
Voltage (X) 

Big error big = big adj 
Faster rise time 
Overshoot 
Stead-state offset 



Step response 

with proportional-derivative controller 
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counteracts proportional 
term slowing adjustment 

• 
• 

Controller Motor
Desired 
Velocity 
(Vdes) 

Actual 
Velocity 

(Vact)Adjusted 
Voltage (X) 

t de t e K 

When approaching desired 
velocity quickly, de/dt term 

Faster rise time 
Reduces overshoot 



Step response 

with proportional-integral controller 
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• 
accumulated error 

• 

Controller Motor
Desired 
Velocity 
(Vdes) 

Actual 
Velocity 

(Vact)Adjusted 
Voltage (X) 

t e t e 

Integral term eliminates 

Increases overshoot 



Step response 
with PID controller 
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Choosing and tuning 
a controller 

Controller Motor
Desired 
Velocity 
(Vdes) 

Actual 
Velocity 

(Vact)Adjusted 
Voltage (X) 

• Use the simplest controller which 
achieves the desired result


• Tuning PID constants is very tricky, 
especially for integral constants 

• Consult the literature for more 

controller tips and techniques




Problem: How do we make 

our robots go in a nice straight line?


Trajectory Motor Velocities vs Time 

Model differential drive with slight motor mismatch 
With an open loop controller, setting motors to same velocity 

results in a less than straight trajectory 



Problem: How do we make 

our robots go in a nice straight line?


Trajectory Motor Velocities vs Time 

With an independent PID controller for each motor,              
setting motors to same velocity results in a straight trajectory 

but not necessarily straight ahead! 



Problem: How do we make 

our robots go in a nice straight line?


• Need to couple drive motors


– Use low-level PID controllers 

to set motor velocity and a 

high-level PID controller to 

couple the motors


– Use one high-level PID 

controller which uses 

odometry or even image 

processing to estimate error




Problem: How do we make 

our robots go in a nice straight line?


Need to couple drive motors


– Use low-level PID controllers to 

set motor velocity and a high-

level PID controller to couple 

the motors


error 
angle 

– Use one high-level PID 

controller which uses odometry 

or even image processing to 

estimate error 




Take Away Points


• Integrating feedback into your control system 
“closes the loop” and is essential for creating 
robust robots 

• Simple finite state machines make a solid 
starting point for your Maslab control systems 

• Spend time this weekend designing behaviors 
and deciding how you will integrate these 
behaviors to create your control system 


