
“Advanced” Vision

January 10, 2005 




Agenda


� Hodge Podge of Vision Stuff

� Stereo Vision 
� Rigid body motion 
� Edge Detection 
�Optical Flow 
� EM Algorithm to locate objects 

� May not be directly applicable, but we’ve tried to 
make it relevant. 



Stereo Vision


�We can judge distance based on the how 
much the object’s position changes. 

Left Image 

Left Eye Right Eye Right Image




Stereo Vision


�Use the image to find the angle to the 
object, then apply some trig: 

Left Image 

angle-side-angle gives 
Right Image you a unique triangle 



Stereo Vision


�What’s the angle? 
 X 
�Perspective projection 

equation tells us Z

x
x/f = X/Z 

� f is focal length, x is f

pixel location 

center of projection� tan(f ) = X/Z = x/f




Stereo Vision


�But in a complex image, objects may be 
hard to identify… 

�Try to match regions instead (block 
correlation) 



Stereo Vision


�Difference 
metric = Sum 
of (Li – Ri)^2 

�Search 
horizontally for 
best match 
(least 
difference) 1 61 

6 55 
5 56 

5 75 
6 55 
5 56 



Stereo Vision


�Still have a problem: unless the object is 
really close, the change might be small… 

Left Image 

Left Eye Right Eye Right Image




Stereo Vision


� And many regions 
will be the same in 
both pictures, even if 
the object has 

Left Imagemoved. 
� We need to apply 

stereo only to 
“interesting” regions. 

Right Image




Stereo Vision


�Uniform regions are not 
interesting 

�Patterned regions are 
interesting 

�Let the “interest” operator 
be the lowest eigenvalue 
of a matrix passed over 
the region. 

5 45 
5 55 
5 55 

lowest eigenvalue = 0 

5 45 
1 55 
5 28 

lowest eigenvalue = 2.5




Stereo Vision




Stereo Vision


�For Maslab, the problem is simpler… can 
easily identify objects and compute 
horizontal disparity. 

�To convert disparity to distance, calibrate 
the trig. 

�Use two cameras… or mount a camera on 

a movable platform… or move your robot




Rigid Body Motion


�Going from data association to motion

�Given 
� a starting x1,y1,?1 
� a set of objects visible in both images


�What is x2, y2, and ?2? 

position one position two 



Rigid Body Motion


� If we only know angles, the problem is 
quite hard: 

1 

12 2 
3 

3 

�Assume distances to objects are known.




Rigid Body Motion


� If angles and distances are known, we can 

construct triangles: 

distance between 
objects should be 
the same from 
both positions 



Rigid Body Motion


�Apply the math for a rotation: 
x1i = cos(?)*x2i + sin(?)*y2i + x0 

y1i = cos(?)*y2i - sin(?)*x2i + y0 

�Solve for x0, y0, and ? with least squares:

S (x1i - cos(?)*x2i - sin(?)*y2i - x0)^2 + 


(y1i - cos(?) *y2i + sin(?)*x2i - y0 )^2 

�Need at least two objects to solve




Rigid Body Motion


�Advantages 
� Relies on the world, not on odometry 
� Can use many or few associations


�Disadvantage 
� Can take time to compute 



Edge Detection 

�Edges are places of large change 
�Scan the image with little computational 

molecules or a ‘kernel’ 

0 0 

1 

1 

-1 

-1 



300

Edge Detection


50


100


150


200


200


50 100 150 200 250 

50 

100 

150 

50 100 150 200 250 300




Edge Detection


�More sophisticated filters work better 
(Laplacian of Gaussian, for example) 

50 

100 

150 

200 

50 100 150 200 250 300 



Edge Detection


�Need to choose a good value for threshold

� Too small—gets lots of noise, fat edges 
� Too big—lose sections of edge 

�What do you do with an edge? 
� Extract lines for a map? 
� Use to separate regions? 



Optical Flow


�Look at changes between successive 
images 
� identify moving objects

� identify robot motion (flow will radiate out 

from direction of motion) 

�For each point on image, set total 
derivative of brightness change to zero: 
� 0 = u*Ex + v*Ey + Et




Optical flow




Optical Flow


�Computationally expensive and requires 
very fast frame rates… or very slow robots 

� Idea from optical flow: looking at change 
between frames can help segment an 
image (only edges will move). 



EM Algorithm


�Given an image with k objects 
�How can we find their locations?




EM Algorithm


�Assume there are k red objects 
�Randomly choose object locations xk, yk


�Loop: 
� Assign each pixel to nearest xk, yk 

� Recenter xk, yk at center of all pixels 

associated with it




EM Algorithm


�Key question: what is k? 
� Need to know how many objects 

�Convergence criteria for random values?

� Pick good guesses for centers 



Performance Note


� Faster access:

� bufferedImage = 

ImageUtil.convertImage(bufferedImage, 
BufferedImage.INT_RGB); 

� DataBufferInt intBuffer = (DataBufferInt) 
bufferedImage.getRaster().getDataBuffer(); 

� int[] b = dataBufferInt.getData();


� Need to keep track of where pixels are: 
� offset = (y*width + x) 
� (b[offset] >> 16) & 0xFF = red or hue 
� (b[offset] >> 8) & 0xFF = green or saturation


� b[offset] & 0xFF = blue or value 



Reminders


�No lecture tomorrow 
�Design Review Wednesday

�Check Point Two: Friday 

� If you haven’t completed check point one, 
you finish it today! 


