
Maslab Software 
Engineering

January 5th, 2005 
Yuran Lu 



Agenda


� Getting Started 
�On the Server 
�Using the Documentation 
�Design Sequence 
�Tools 
�The Maslab API 

� Design Principles

� Threading in Java




On the Server


� Put these lines in your .environment:

� add 6.186 
� add -f java_v1.5.0 
� setenv JAVA_HOME /mit/java_v1.5.0 
� setenv CLASSPATH /mit/6.186/2005/maslab.jar:. 

� If you’re Serverphobic, just ask for help. 
You’ll learn fast, and you’ll be glad you did. 



Using the Documentation


� Maslab API 
� Java 1.5.0 API 
� Sun’s Java Tutorial 
� Ed Faulkner’s Java Reference 
� All linked from SoftwareInfo page on wiki 



Design Sequence


� Open a text editor to edit a source code file:

� emacs MyExample.java 

� Write class declaration, and declarations for each of your
methods, and annotate with comments 

� Fill in source code 
� Compile: 

� javac MyExample.java 
� This produces MyExample.class if successful 

� Fix compile errors and repeat compilation until successful 
� Run: 

� java MyExample 
� This searches the CLASSPATH for MyExample.class and executes it. 



Tools


� CVS, subversion 
� make, ant 
� OrcSpy, BotClient 
� Instructions all on SoftwareInfo page of wiki 



The Maslab API


� maslab.orc 
� maslab.camera 
� maslab.telemetry.channel 



Agenda


� Getting Started

� Design Principles 

�Motivation 
�Modularity and the Design Process 
�Writing Good Specifications 
�Testing 
�Good Design Practices 

� Threading in Java




Design Principles - Motivation


�	 Coding a Maslab Robot is a formidable, multi-
person project 

�	 Making debugging easier 
�	 Making sure different team member’s code all 

work together 
�	 Making sure one team member’s changes 

doesn’t break another team member’s code 



Modularity and the Design Process


� Modular Design 
� Provides abstraction 
� Gives up fine-control abilities, but makes code much

more manageable 
� The Design Process 

� Top-down vs. Bottom-up 
� Write out specifications for each module 
� Write code for modules 
� Test each module separately as it is being written 
� Test overall system for functionality 



Modularity - An Example


� Start with most basic behaviors:

� DriveTowardBall

� WallFollow


� DriveToWallAndStop


� Build up more complicated behaviors:

� HuntRedBalls


� GoToLastRememberedBall

� AlignAndDepositBall

� WanderToGetUnstuck


� Build highest-level behaviors:

� WinMaslab 



Writing Good Specifications


� This that should go into the specification:

� Synopsis of classes and methods 
� How methods are called 
� Restrictions on argument values 
� The return value and effect of calling the method


� What shouldn’t go into the specification:

� How code is implemented 
� Long paragraphs of text




Testing


� Test each module separately 
� Test overall system 
� Test special cases 
� Come up with test cases before coding, or

have a different team member do testing

� Using the main() method 
� Unit testing




Good Design Practices


� EXTREMELY IMPORTANT! 
� Thou shalt Test Constantly 
� Start small, build up 
� Modularity 
� Avoid over-abstraction 
� Back up code 

� Keep multiple versions backed up 
� Keep separate backups off of the robot computer 



Agenda


� Getting Started 
� Design Principles 
� Threading in Java 

�Motivation 
�Using Threading 
�Synchronization 



Motivation for Threading


� Ability to perform tasks in parallel 
� If used properly, can make your robot run faster 
� Different threads for: 

� Image capture and processing 
� Keeping a current map 
� Controlling the current motion behavior (Wandering, 

Ball-seeking, Obstacle Avoidance, etc.)

� Higher-level strategic control




Using Threading


� Look in Sun’s Java tutorial, or Ed 
Faulkner’s Java reference 

� Look at the Java API: 
� Thread, Runnable, wait(), notify(), sleep(), 

yield() 
� Must take care to avoid deadlock 



Synchronization in Threading


� Allows blocks of code to be mutually 
exclusive 

� Writing to the same object from two 
threads at the same time will cause your 
program to break 


