
6.254 : Game Theory with Engineering Applications
 
Lecture 4: Strategic Form Games - Solution Concepts
 

Asu Ozdaglar
 
MIT
 

February 11, 2010
 

1 



Game Theory: Lecture 4 Introduction 

Outline 

Review 

Correlated Equilibrium 

Existence of a Mixed Strategy Equilibrium in Finite Games 

Reading: 
Fudenberg and Tirole, Chapters 1 and 2. 
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Game Theory: Lecture 4 Review 

Rationalizability 

A different solution concept in which a player’s belief about the other 
players’ actions is not assumed to be correct (as in a Nash equilibrium), but 
rather, simply constrained by rationality. 

(1)	 Players maximize with respect to some (uncorrelated) beliefs about 
opponent’s behavior (i.e., they are rational). 

(2)	 Beliefs have to be consistent with other players being rational, and 
being aware of each other’s rationality, and so on (but they need not 
be correct). 

Leads to an infinite regress: “I am playing strategy σ1 because I think player 
2 is using σ2, which is a reasonable belief because I would play it if I were 
player 2 and I thought player 1 was using σ�1, which is a reasonable thing to 
expect for player 2 because σ1

� is a best response to σ2
� , . . .. 
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Game Theory: Lecture 4 Review 

Never-Best Response and Strictly Dominated Strategies
 

Definition 

A pure strategy si is strictly dominated if there exists a mixed strategy 
σi ∈ Σi such that 

ui (σi , s−i ) > ui (si , s−i ) for all s−i ∈ S−i . 

Definition 

A pure strategy si is a never-best response if for all beliefs σ−i there 
exists σi ∈ Σi such that 

ui (σi , σ−i ) > ui (si , σ−i ). 

A strictly dominated strategy is a never-best response. 
Does the converse hold? 
Last time, we studied a 3-player example that illustrates a never-best 
response strategy which is not strictly dominated. 
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Game Theory: Lecture 4 Review 

Rationalizable Strategies 

Iteratively eliminating never-best response strategies yields rationalizable 
strategies. 

Start with S̃ 
i 
0 = Si .
 

For each player i ∈ I and for each n ≥ 1,
 

nS̃ 
i = {si ∈ S̃ 

i
n−1 σ−i ∈ ∏ Σ̃ n

j 
−1 such that
| ∃ 

j =i
 

ui (si , σ−i ) ≥ ui (si
�, σ−i ) for all si

� ∈ S̃ 
i
n−1}. 

Independently mix over S̃ 
i
n to get Σ̃ 

i
n .
 

Let Ri 
∞ = ∩n 

∞ 
=1S̃ 

i
n . We refer to the set Ri 

∞ as the set of
 
rationalizable strategies of player i .
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Game Theory: Lecture 4 Review 

Rationalizable Strategies 

Since the set of strictly dominated strategies is a strict subset of the set of 
never-best response strategies, set of rationalizable strategies represents a 
further refinement of the strategies that survive iterated strict dominance. 

Let NEi denote the set of pure strategies of player i used with positive 
probability in any mixed Nash equilibrium. 

Then, we have 

where R∞ 
i 

NEi ⊆ R∞ 
i ⊆ D∞ 

i , 

is the set of rationalizable strategies of player i , and D∞ 
i is the set 

of strategies of player i that survive iterated strict dominance. 

Remarks: 

For a two-player game, a never-best response strategy is always strictly 
dominated. 

If beliefs are allowed to be correlated, then a never-best response strategy is 
always strictly dominated. (Proof relies on the separating hyperplane 
theorem; check your book or the notes on Stellar) 
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Game Theory: Lecture 4 Correlated Equilibrium 

Correlated Strategies 

In a Nash equilibrium, players choose strategies (or randomize over 
strategies) independently. 

For games with multiple Nash equilibria, one may want to allow for 
randomizations between Nash equilibria by some form of 
communication prior to the play of the game. 

Example Consider the Battle of the Sexes game: 

Ballet 
Football 

Ballet Football 
1, 4 0, 0 
0, 0 4, 1 

Suppose that the players flip a coin and go to the Ballet if the coin is 
Heads, and to the Football game if the coin is tails, i.e., they randomize 
between two pure strategy Nash equilibria, resulting in a payoff of 
(5/2, 5/2) that is not a Nash equilibrium payoff. 
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Game Theory: Lecture 4 Correlated Equilibrium 

Traffic Intersection Game 

Consider a game where two cars arrive at an intersection simultaneously. 
Row player (player 1) has the option to play U or D, and the column 
player (player 2) has the option to play L or R with payoffs as follows. 

L R 
U 5, 1 0, 0 
D 4, 4 1, 5 

There are two pure strategy Nash equilibria: (U, L) and (D, R). 
To find the mixed strategy Nash equilibria, assume player 1 plays U 
with probability p and player 2 plays L with probability q. Using the 
mixed equilibrium characterization, we have 

5q = 4q + (1 − q) ⇒ q = 
1

1 
2 

5p = 4p + (1 − p) ⇒ p = 2 

This implies that there is a unique mixed strategy equilibrium with 
expected payoff (5/2,5/2). 
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Game Theory: Lecture 4 Correlated Equilibrium 

Traffic Intersection Game
 

Assume that there is a publicly observable random variable (such as a 
fair coin) such that with probability 1/2 (Head), player 1 plays U and 
player 2 plays L, and with probability 1/2 (Tail), player 1 plays D and 
player 2 plays R. 
The expected payoff for this play of the game increases to (3,3). 
We show that no player has an incentive to deviate from the
 
“recommendation” of the coin.
 
If player 1 sees a Head, he believes that player 2 will play L, and 
therefore playing U is his best response (similar argument when he 
sees a Tail). 
Similarly, if player 2 sees a Head, he believes that player 1 will play U, 
and therefore playing L is his best response (similar argument when 
he sees a Tail). 
When the recommendation of the coin is part of a Nash equilibrium, 
no player has an incentive to deviate 

9 



Game Theory: Lecture 4 Correlated Equilibrium 

Traffic Intersection Game
 

With a publicly observable random variable, we can get any payoff 
vector in the convex hull of Nash equilibrium payoffs. 

Note that the convex hull of a finite number of vectors x1, . . . , xk is 
given by 

k k 
conv({x1, . . . , xk }) = {x x = ∑
λi xi , λi ≥ 0, ∑
λi = 1}| 

i=1 i=1 

The coin flip is one way of communication prior to the play.
 
A more general form of communication is to find a trusted mediator
 
who can perform general randomizations.
 
Consider next a more elaborate signalling scheme.
 
Suppose the players find a mediator who chooses x ∈ {1, 2, 3} with
 
equal probability 1/3. She then sends the following messages:
 

If x = 1, player 1 plays U, player 2 plays L.
 
If x = 2, player 1 plays D, player 2 plays L.
 
If x = 3, player 1 plays D, player 2 plays R.
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Game Theory: Lecture 4 Correlated Equilibrium 

Traffic Intersection Game 

We show that no player has an incentive to deviate from the 
“recommendation” of the mediator: 

If player 1 gets the recommendation U, he believes player 2 will play L, 
so his best response is to play U. 
If player 1 gets the recommendation D, he believes player 2 will play 
L, R with equal probability, so playing D is a best response. 
If player 2 gets the recommendation L, he believes player 1 will play 
U, D with equal probability, so playing L is a best response. 
If player 2 gets the recommendation R, he believes player 1 will play D, 
so his best response is to play R. 

Thus the players will follow the mediator’s recommendations. 

With the mediator, the expected payoffs are (10/3, 10/3), strictly 
higher than what the players could get by randomizing between Nash 
equilibria. 
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Game Theory: Lecture 4 Correlated Equilibrium 

Correlated Equilibrium 

The preceding examples lead us to the notions of correlated strategies 
and “correlated equilibrium”. 

Let Δ(S) denote the set of probability measures over the set S . 
Let R be a random variable taking values in S
 Πn= 
i=1Si distributed 
according to π. 

An instantiation of R is a pure strategy profile and the i th component 
of the instantiation will be called the recommendation to player i . 
Given such a recommendation, player i can use conditional probability 
to form a posteriori beliefs about the recommendations given to the 
other players. 

12 



Game Theory: Lecture 4 Correlated Equilibrium 

Correlated Equilibrium 

Definition 

A correlated equilibrium of a finite game is a joint probability 
distribution π ∈ Δ(S) such that if R is a random variable distributed 
according to π then 

∑ Prob(R = s |Ri = si ) [ui (si , s−i ) − ui (ti , s−i )] ≥ 0 
s−i ∈S−i 

for all players i , all si ∈ Si such that Prob(Ri = si ) > 0, and all ti ∈ Si . 

A distribution π is defined to be a correlated equilibrium if no player 
can ever expect to unilaterally gain by deviating from his 
recommendation, assuming the other players play according to their 
recommendations. 
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Game Theory: Lecture 4 Correlated Equilibrium 

Characterization of Correlated Equilibrium 

We have the following useful characterization for correlated equilibria in 
finite games. 

Proposition 

A joint distribution π ∈ Δ(S) is a correlated equilibrium of a finite game if 
and only if 

∑ π(s) [ui (si , s−i ) − ui (ti , s−i )] ≥ 0 (1) 
s−i ∈S−i 

for all players i and all si , ti ∈ Si such that si �= ti . 
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check it in the case si �= ti .

Game Theory: Lecture 4 Correlated Equilibrium 

Characterization of Correlated Equilibrium 

Proof. 

Using the definition of conditional probability, we can rewrite the 
definition of a correlated equilibrium as 

∑ ∑t 

π( 
π 
s 
(
) 
si , t 

−i ) − ui (ti , s−i )] ≥ 0 
s−i ∈S−i −i ∈S−i −i )

[ui (si , s 

for all i , all si ∈ Si such that ∑t−i ∈S−i 
π(si , t−i ) > 0, and all ti ∈ Si . 

The denominator does not depend on the variable of summation so it 
can be factored out of the sum and cancelled, yielding the simpler 
condition that (1) holds for all i , all si ∈ Si such that 
∑t−i ∈S−i 

π(si , t−i ) > 0, and all ti ∈ Ci . 

But if ∑t−i ∈S−i 
π(si , t−i ) = 0 then the left hand side of (1) is zero 

regardless of i and ti , so the equation always holds trivially in this 
case. 
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Game Theory: Lecture 4 Correlated Equilibrium 

Characterization of Correlated Equilibrium 

Another equivalent convenient characterization: a joint distribution 
π ∈ Δ(S) is a correlated equilibrium of a finite game if and only if for 
all i and si with π(si ) > 0 (i.e., marginal distribution), 

∑ π(s−i | si ) [ui (si , s−i ) − ui (ti , s−i )] ≥ 0, 
s−i ∈S−i 

for all ti ∈ Si . 

Remarks: 

Any mixed Nash equilibrium is a correlated equilibrium. 

The set of correlated equilibria is a convex set. 

An immediate implication of the preceding two statements is that the 
set of correlated equilibria contains the convex hull of the set of 
(mixed) Nash equilibria. 
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Game Theory: Lecture 4 Correlated Equilibrium 

Departure Function Characterization 

We can alternatively think of correlated equilibria as joint 
distributions corresponding to recommendations which will be given 
to the players as part of an extended game. 
The players are then free to play any function of their 
recommendation (this is called a departure function) as their strategy 
in the game. 
If it is a Nash equilibrium of this extended game for each player to 
play his recommended strategy (i.e., to use the identity departure 
function), then the distribution is a correlated equilibrium. 

Proposition 

A joint distribution π ∈ Δ(S) is a correlated equilibrium of a finite game if 
and only if 

∑ π(s) [ui (si , s−i ) − ui (ζ i (si ), s−i )] ≥ 0 
s∈S 

(2) 

for all players i and all functions ζ i : Si Si .→ 
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Game Theory: Lecture 4 Correlated Equilibrium 

Departure Function Characterization 

Proof. 

By substituting ti = ζ i (si ) into (1) and summing over all si ∈ Si we 
obtain (2) for any i and any ζ i : Si Si . For the converse, define ζ i for → 
any si , ti ∈ Si by � 

ζ i (ri ) = 
ti ri = si 
ri else. 

Then all the terms in (2) except the si terms cancel yielding (1). 
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Game Theory: Lecture 4 Existence Results 

Nash’s Theorem
 

Theorem 

(Nash) Every finite game has a mixed strategy Nash equilibrium. 

Implication: matching pennies game necessarily has a mixed strategy 
equilibrium. 

Why is this important? 

Without knowing the existence of an equilibrium, it is difficult (perhaps 
meaningless) to try to understand its properties. 
Armed with this theorem, we also know that every finite game has an 
equilibrium, and thus we can simply try to locate the equilibria. 
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convex set not a convex set

Game Theory: Lecture 4 Existence Results 

Definitions
 

A set in a Euclidean space is compact if and only if it is bounded and 
closed. 
A set S is convex if for any x , y ∈ S and any λ ∈ [0, 1],
 
λx + (1 − λ)y ∈ S .
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There exists no optimal    that attains it

Game Theory: Lecture 4 Existence Results 

Weierstrass’s Theorem
 

Theorem 

(Weierstrass) Let A be a nonempty compact subset of a finite 
dimensional Euclidean space and let f : A R be a continuous function. →
Then there exists an optimal solution to the optimization problem 

minimize f (x) 
subject to x ∈ A. 
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Game Theory: Lecture 4 Existence Results 

Kakutani’s Fixed Point Theorem
 

Theorem 

(Kakutani) Let A be a non-empty subset of a finite dimensional 
Euclidean space. Let f : A � A be a correspondence, with 
x ∈ A �→ f (x) ⊆ A, satisfying the following conditions: 

A is a compact and convex set.
 

f (x) is non-empty for all x ∈ A.
 

f (x) is a convex-valued correspondence: for all x ∈ A, f (x) is a
 
convex set. 

n nf (x) has a closed graph: that is, if {x , y } → {x , y } with 
ny ∈ f (xn), then y ∈ f (x). 

Then, f has a fixed point, that is, there exists some x ∈ A, such that 
x ∈ f (x). 
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is not convex-valued does not have a 
closed graph

Game Theory: Lecture 4 Existence Results 

Kakutani’s Fixed Point Theorem—Graphical Illustration
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Game Theory: Lecture 4 Existence Results 

Proof of Nash’s Theorem
 

Recall that σ∗ is a (mixed strategy) Nash Equilibrium if for each
 
player i ,
 

ui (σi 
∗, σ∗ ) ≥ ui (σi , σ

∗ ) for all σi ∈ Σi .−i −i 

Define the best response correspondence for player i Bi : Σ−i � Σi as 

Bi (σ−i ) = σi
� ∈ Σi | ui (σi

� , σ−i ) ≥ ui (σi , σ−i ) for all σi ∈ Σi . 

Define the set of best response correspondences as 

B (σ) = [Bi (σ−i )]i∈I . 

Clearly 
B : Σ � Σ. 
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Game Theory: Lecture 4 Existence Results 

Proof (continued) 

The idea is to apply Kakutani’s theorem to the best response 
correspondence B : Σ � Σ. We show that B(σ) satisfies the 
conditions of Kakutani’s theorem. 

Σ is compact, convex, and non-empty. 
By definition 

Σ = ∏ Σi 
i∈I 

where each Σi = {x | ∑j xj = 1} is a simplex of dimension |Si | − 1, 
thus each Σi is closed and bounded, and thus compact. Their product 
set is also compact. 

B(σ) is non-empty. 
By definition,
 

Bi (σ−i ) = arg max ui (x , σ−i )
 
x∈Σi 

where Σi is non-empty and compact, and ui is linear in x . Hence, ui is 
continuous, and by Weirstrass’s theorem B(σ) is non-empty. 
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Game Theory: Lecture 4 Existence Results 

Proof (continued) 

3. B(σ) is a convex-valued correspondence. 

Equivalently, B(σ) ⊂ Σ is convex if and only if Bi (σ−i ) is convex for 
all i . Let σi

� , σi
�� ∈ Bi (σ−i ). 

Then, for all λ ∈ [0, 1] ∈ Bi (σ−i ), we have
 

ui (σ�i , σ−i ) ≥ ui (τi , σ−i ) for all τi ∈ Σi ,
 

ui (σ�i
�, σ−i ) ≥ ui (τi , σ−i ) for all τi ∈ Σi .
 

The preceding relations imply that for all λ ∈ [0, 1], we have 

λui (σi
� , σ−i ) + (1 − λ)ui (σi

��, σ−i ) ≥ ui (τi , σ−i ) for all τi ∈ Σi . 

By the linearity of ui , 

ui (λσi
� + (1 − λ)σi

��, σ−i ) ≥ ui (τi , σ−i ) for all τi ∈ Σi . 

Therefore, λσ� + (1 − λ)σ�� ∈ Bi (σ−i ), showing that B(σ) isi i 
convex-valued. 
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Game Theory: Lecture 4 Existence Results 

Proof (continued) 

4. B(σ) has a closed graph. 

Suppose to obtain a contradiction, that B(σ) does not have a closed 
graph. 
Then, there exists a sequence (σn , σ̂ n) (σ, σ̂ ) with σ̂ n ∈ B(σn), but 
ˆ ∈

→ 
ˆ i ∈ −i ).σ / B(σ), i.e., there exists some i such that σ / Bi (σ

This implies that there exists some σ�i ∈ Σi and some � > 0 such that 

ui (σi
� , σ−i ) > ui (σ̂ i , σ−i ) + 3�. 

By the continuity of ui and the fact that σn σ−i , we have for −i →
sufficiently large n, 

ui (σ�i , σ
n 
−i ) ≥ ui (σi

� , σ−i ) − �. 
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Game Theory: Lecture 4 Existence Results 

Proof (continued) 

[step 4 continued] Combining the preceding two relations, we obtain 

ui (σi
� , σn 

−i ) > ui (σ̂ i , σ−i ) + 2� ≥ ui (σ̂ ni , σ
n 
−i ) + �, 

where the second relation follows from the continuity of ui . This 
contradicts the assumption that σ̂ n ∈ Bi (σn 

−i ), and completes the i 
proof. 

The existence of the fixed point then follows from Kakutani’s theorem. 

If σ∗ ∈ B (σ∗), then by definition σ∗ is a mixed strategy equilibrium. 
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