
6.254: Game Theory February 11, 2010 

Lecture 4: Correlated Rationalizability 

Lecturer: Asu Ozdaglar 

1 Correlated Rationalizability 

In this note, we allow a player to believe that the other players’ actions are correlated— in 

other words, the other players might be in a coalition and thus pick their strategies together 

instead of individually. To capture this idea, we slightly modify our definition of a belief. 

Definition 1.1 A belief of player i about the other players’ actions is a probability measure 

over the set S−i, which we denote as Δ(S−i). 

Note that we allow correlation in our belief. Recall, Δ(S) denotes a probability distribu­

tion over S. One possible type of distribution is the product distribution S1 × S2 × ... × SI , 

which denotes independent mixing between the I players. In general however, the distribu­

tion Δ(S) allows correlation in the strategies of players. 

Definition 1.2 An action si ∈ Si is a rational action if there exists a belief α ∈ Δ(S−i)−i 

such that si is a best response to α−i. 

To define rationalizable strategies, we eliminate actions that are not best responses to 

any belief, or in other words, we eliminate actions that are never-best responses. Let us next 

recall the definitions of “never-best response” strategy and “strictly dominated” strategy. 

Definition 1.3 

1. An action si is a never-best response if for all beliefs α−i there exists σi ∈ Σi such that 

ui(σi, α−i) > ui(si, α−i). 

2. An action si is strictly dominated if there exists σi Σi such that ui(σi, s >∈ −i) 

ui(si, s−i) for all s−i ∈ S−i. 
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It is straightforward to show that a strictly dominated action is a never-best response. 

Does the other direction hold? We have shown in the previous lecture that it doesn’t hold 

if beliefs are independent mixings. In this lecture, we will show that this direction holds for 

correlated beliefs. 

2 Strict Dominance & Correlated Rationalizability 

We first formally define the process of iterative elimination of strictly dominated strategies. 

Algorithm 2.1 (Strict Dominance Iteration) Let Si 
0 = Si and Σi 

0 = Σi. For each 

player i ∈ I and for each n ≥ 1, we define Sn asi 

Si
n = {si ∈ Si

n−1 | there is no σi ∈ Σi
n−1 such that 

ui(σi, s−i) > ui(si, s for all s−i ∈ Sn−1 −i) −i }. 

Independently mix over Si
n to get Σn

i . Let Di
∞ = ∩n

∞
=1Si

n . We refer to the set Di
∞ as the set 

of strategies of player i that survive iterated strict dominance. 

We next define the process of iterative elimination of never-best response strategies. Re­

call our notation that Δ(A) denotes the set of probability measures over the set A [implying 

that the set Δ(S−i) denotes the set of all probability measures over the set S−i, including 

independent mixings]. 

Algorithm 2.2 (Correlated Rationalizability Iteration) Start with S̃i 
0 = Si. Then, 

for each player i ∈ I and for each n ≥ 1, 

S̃n S̃n−1 there exists α−i ∈ Δ(S̃n−1) such that
i = {si ∈ i | −i


ui(si, α−i) ≥ ui(si
� , α−i) for all si

� ∈ S̃i
n−1 }. 

Let Ri
∞ = ∩n

∞
=1S̃i

n . We refer to the set Ri
∞ as the set of rationalizable strategies of player i. 

At an intuitive level, rationalizability asks the question “what players might do”, whereas 

strict dominance asks the question “what players won’t do, and what they won’t do con­

ditional on other players not doing certain things, etc.”. Note that both iterated strict 
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dominance and rationalizability never eliminate any strategy played with positive probabil­

ity in a Nash equilibrium. Indeed both these concepts could be quite weak. Most games, 

including many games with a unique Nash equilibrium are not dominance solvable. 

In the next proposition, we show the equivalence of iterated strict dominance and corre­

lated rationalizability. 

Proposition 2.3 Consider a strategic form game �I, (Si), (ui)� with finite number of players 

and finite strategy spaces Si. Then Si
n = S̃i

n for all n. 

Proof. We first note that si strictly dominated implies that si is a never-best response. 

Hence S̃i
n ⊆ Si

n for all n. We next show that if a pure strategy is a never-best response, then 

it is strictly dominated. We show this by contraposition. 

Assume that for some player i the pure strategy s̄i ∈ Si is not strictly dominated. This 

implies that, for all σi ∈ Σi
n, there exists some s−i ∈ Sn such that −i 

ui(σi, s−i) ≤ ui(si, s−i). (1) 

Consider the set S−i. Letting |S−i| = d, we can write S−i = {(s−i)1, . . . , (s−i)d}. We 

define the set 

Ūi = 
�

x ∈ Rd | there exists some σi ∈ Σi such that xj ≤ ui(σi, (s−i)j ) for all j ∈ {1, . . . , d}
�

. 

¯For each mixed strategy σi of player i, we have a point in Ui, which specifies player i’s payoff 

for every pure strategy of its opponents. 

It is straightforward to verify that the set Ui is nonempty and convex. Moreover, it 

¯follows by Eq. 1, that the vector x̄ = [ui(s̄i, (s−i)j )]j∈{1,...,d} is not an interior point of Ui. By 

the Supporting Hyperplane Theorem (see the Appendix), there exists some α−i ∈ Rd =� 0 

such that 

αT x̄ ≥ αT for all x ∈ Ūi.−i −i x 

Since α−i = 0, by appropriate normalization, we can assume that � �d
j=1(α−i)j = 1. Moreover, 

¯in view of the structure of the set Ui, it can be seen that α−i ≥ 0. Hence α−i is a (correlated) 
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belief. From the preceding relation, we have 

αT 
−i 

�
ui(s̄i, sj )

� 

j∈{1,...,d} 
≥ αT 

�
ui(σi, sj )

� 

j∈{1,...,d} 
for all σi ∈ Σi,−i 

which implies that 

ui(s̄i, α−i) ≥ ui(σi, α−i) for all σi ∈ Σi. 

Hence s̄i is a best response to the belief α−i. This shows that Si
n ⊆ S̃i

n for all n and completes 

the proof. 

Final Lesson: 

•	 Let NEi denote the set of pure strategies of player i used with positive probability in 

any mixed Nash equilibrium. Then, we have NEi ⊆ R∞
i ⊆ Di

∞, where Ri
∞ is the set 

of rationalizable strategies of player i, and Di
∞ is the set of strategies of player i that 

survive iterated strict dominance. 

•	 The latter two sets are equal when beliefs are allowed to be correlated. 

3 Appendix 

This section presents some basic terminology and results from real and convex analysis. 

3.1 Closed and Open Sets 

We say that x is a closure point of a subset X of Rn if there exists a sequence {xk} ⊂ X that 

converges to x. The closure of X, denoted by cl(X), is the set of all closure points of X. A 

subset X of Rn is called closed if X = cl(X). It is called open if its complement {x | x /∈ X} 

is closed. It is called compact if it is closed and bounded. 

A vector x ∈ X is an interior point of X if there exists a neighborhood of x that is 

contained in X. The set of all interior points of X is called the interior of X, and is denoted 

by int(X). A vector x ∈ cl(X), which is not an interior point of X is said to be a boundary 

point of X. The set of all boundary points of X is called the boundary of X. 
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3.2 Convexity and Hyperplanes 

A subset C of Rn is called convex if for all x, y ∈ C, 

λx + (1 − λ)y ∈ C, ∀ λ ∈ [0, 1]. 

Intuitively, if you take two points in a convex set and draw a line between them, then all of 

the points on the line must also be contained in the set. 

Some of the most important principles in convexity and optimization, including duality, 

revolve around the use of hyperplanes, i.e., (n − 1)-dimensional affine sets. A hyperplane has 

the property that it divides the space into two halfspaces. 

A hyperplane in Rn is a set of the form {x | a�x = b}, where a is nonzero vector in Rn 

and b is a scalar. If x̄ is any vector in a hyperplane H = {x | a�x = b}, then we must have 

a�x̄ = b, so the hyperplane can be equivalently described as 

H = {x | a�x = a�x̄}, 

or 

H = x̄ + {x | a�x = 0}. 

Thus, H is an affine set that is parallel to the subspace {x | a�x = 0}. This subspace is 

orthogonal to the vector a, and consequently, a is called the normal vector of H. 

The sets 

{x | a�x ≥ b}, {x | a�x ≤ b}, 

are called the closed halfspaces associated with the hyperplane (also referred to as the positive 

and negative halfspaces , respectively). The sets 

{x | a�x > b}, {x | a�x < b}, 

are called the open halfspaces associated with the hyperplane. 

We say that two sets C1 and C2 are separated by a hyperplane H = {x | a�x = b} if each 

lies in a different closed halfspace associated with H, i.e., if either 

a�x1 ≤ b ≤ a�x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2, 

4-5 



�

�

C
2

C
1

_
x

a
a

C

Figure 1: (a) Illustration of a hyperplane separating two sets C1 and C2. (b) Illustration of 
a hyperplane supporting a set C at a point x̄ that belongs to the closure of C. 

or 

a�x2 ≤ b ≤ a�x1, ∀ x1 ∈ C1, ∀ x2 ∈ C2. 

We then also say that the hyperplane H separates C1 and C2, or that H is a separating 

hyperplane of C1 and C2. We use several different variants of this terminology. For example, 

the statement that two sets C1 and C2 can be separated by a hyperplane or that there exists 

a hyperplane separating C1 and C2, means that there exists a vector a = 0 such that 

sup a�x ≤ inf a�x, ∀ x1 ∈ C1, ∀ x2 ∈ C2; 
x∈C1 

x∈C2 

(see Figure 1). 

If a vector x̄ belongs to the closure of a set C, a hyperplane that separates C and the 

singleton set {x̄} is said be supporting C at x̄. Thus the statement that there exists a 

supporting hyperplane of C at x̄ means that there exists a vector a = 0 such that 

a�x̄ ≤ a�x, ∀ x ∈ C, 

or equivalently, since x̄ is a closure point of C, 

a�x̄ = inf a�x. 
x∈C 

As illustrated in Figure 1, a supporting hyperplane is a hyperplane that “just touches” the 

set C. 

We will next prove results regarding the existence of hyperplanes that separate two convex 

sets. The following proposition deals with the basic case where one of the two sets consists 
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Figure 2: Illustration of the proof of the Supporting Hyperplane Theorem for the case where 
the vector x̄ belongs to cl(C), the closure of C. We choose a sequence {xk} of vectors that 
do not belong to cl(C), with xk x̄, and we project xk on cl(C). We then consider, for each →
k, the hyperplane that is orthogonal to the line segment connecting xk and its projection x̂k, 
and passes through xk. These hyperplanes “converge” to a hyperplane that supports C at 
x̄. 

of a single vector. The proof is based on the classical Projection Theorem (see Proposition 

2.2.1 in Bertsekas, Nedic, and Ozdaglar [1]) and is illustrated in Figure 2. 

Proposition 3.1 (Supporting Hyperplane Theorem) Let C be a nonempty convex subset of 

Rn and let x̄ be a vector in Rn . If x̄ is not an interior point of C, there exists a hyperplane 

that passes through x̄ and contains C in one of its closed halfspaces, i.e., there exists a vector 

a = 0 such that 

a�x̄ ≤ a�x, ∀ x ∈ C.


Proof: Consider cl(C), the closure of C, which is a convex set. Let {xk} be a sequence of 

vectors such that xk x̄ and xk ∈/ cl(C) for all k; such a sequence exists because x̄ does not → 

belong to the interior of C. If x̂k is the projection of xk on cl(C), we have (see the Projection 

Theorem, Proposition 2.2.1 in Bertsekas, Nedic, and Ozdaglar [1]) 

(x̂k − xk)
�(x − x̂k) ≥ 0, ∀ x ∈ cl(C). 

Hence we obtain for all x ∈ cl(C) and all k, 

(x̂k − xk)
�x ≥ (x̂k − xk)

�x̂k = (x̂k − xk)
�(x̂k − xk) + (x̂k − xk)

�xk ≥ (x̂k − xk)
�xk. 
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We can write this inequality as 

ak
� x ≥ ak

� xk, ∀ x ∈ cl(C), ∀ k,	 (2) 

where 
x̂k − xk 

ak = . �x̂k − xk� 

We have �ak� = 1 for all k, and hence the sequence {ak} has a subsequence that converges 

to a nonzero limit a. By considering Eq. (2) for all ak belonging to this subsequence and by 

taking the limit as k →∞, we obtain the desired result. 

Note that if x̄ is a closure point of C, then the hyperplane of the preceding proposition 

supports C at x̄. Note also that if C has empty interior, then any vector x̄ can be separated 

from C as in the proposition. 

Proposition 3.2 (Separating Hyperplane Theorem) Let C1 and C2 be two nonempty convex 

subsets of Rn . If C1 and C2 are disjoint, there exists a hyperplane that separates them, i.e., 

there exists a vector a = 0 such that 

a�x1 ≤ a�x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2.	 (3) 

Proof: Consider the convex set 

C = C2 − C1 = {x | x = x2 − x1, x1 ∈ C1, x2 ∈ C2}. 

Since C1 and C2 are disjoint, the origin does not belong to C, so by the Supporting Hyper­

plane Theorem, there exists a vector a = 0 such that 

0 ≤ a�x, ∀ x ∈ C, 

which is equivalent to Eq. (3). 
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