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Game Theory: Lecture 6 Introduction 

Outline 

Continuous Games 

Existence of a Mixed Nash Equilibrium in Continuous Games 
(Glicksberg’s Theorem) 

Existence of a Mixed Nash Equilibrium with Discontinuous Payoffs 

Construction of a Mixed Nash Equilibrium with Infinite Strategy Sets 

Uniqueness of a Pure Nash Equilibrium for Continuous Games 

Reading: 
Myerson, Chapter 3. 
Fudenberg and Tirole, Sections 12.2, 12.3. 
Rosen J.B., “Existence and uniqueness of equilibrium points for 
concave N-person games,” Econometrica, vol. 33, no. 3, 1965. 
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Game Theory: Lecture 6 Continuous Games 

Continuous Games 

We consider games in which players may have infinitely many pure 
strategies. 

Definition 

A continuous game is a game �I , (Si ), (ui )� where I is a finite set, the 
Si are nonempty compact metric spaces, and the ui : S R are →
continuous functions. 

We next state the analogue of Nash’s Theorem for continuous games.
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Game Theory: Lecture 6 Continuous Games 

Existence of a Mixed Nash Equilibrium 

Theorem 

(Glicksberg) Every continuous game has a mixed strategy Nash equilibrium. 

With continuous strategy spaces, space of mixed strategies infinite 
dimensional, therefore we need a more powerful fixed point theorem than 
the version of Kakutani we have used before. 

Here we adopt an alternative approach to prove Glicksberg’s Theorem,

which can be summarized as follows:


We approximate the original game with a sequence of finite games, 
which correspond to successively finer discretization of the original 
game. 
We use Nash’s Theorem to produce an equilibrium for each 
approximation. 
We use the weak topology and the continuity assumptions to show that 
these converge to an equilibrium of the original game. 
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Game Theory: Lecture 6 Continuous Games 

Closeness of Two Games


Let u = (u1, . . . , uI ) and ũ = ( ũ1, . . . , ũI ) be two profiles of utility functions 
defined on S such that for each i ∈ I , the functions ui : S R and 
ũi : S R are bounded (measurable) functions. 

→ 
→ 

We define the distance between the utility function profiles u and ũ as 

max sup ui (s) − ũi (s) . 
i∈I s∈S 

| |

Consider two strategic form games defined by two profiles of utility functions: 

G = �I , (Si ), (ui )�, G̃ = �I , (Si ), (ũi )�. 

If σ is a mixed strategy Nash equilibrium of G , then σ need not be a mixed 
strategy Nash equilibrium of G̃ . 

Even if u and ũ are very close, the equilibria of G and G̃ may be far apart. 

For example, assume there is only one player, S1 = [0, 1], u1(s1) = �s1, 
and ũ1(s1) = −�s1, where � > 0 is a sufficiently small scalar. The 
unique equilibrium of G is s1 

∗ = 1, and the unique equilibrium of G̃ is 
s1 
∗ = 0, even if the distance between u and ũ is only 2�. 
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Game Theory: Lecture 6 Continuous Games 

Closeness of Two Games and �-Equilibrium 

However, if u and ũ are very close, there is a sense in which the equilibria of 
G are “almost” equilibria of G̃ . 

Definition 

(�-equilibrium) Given � ≥ 0, a mixed strategy σ ∈ Σ is called an �-equilibrium if 
for all i ∈ I and si ∈ Si , 

ui (si , σ−i ) ≤ ui (σi , σ−i ) + �. 

Obviously, when � = 0, an �-equilibrium is a Nash equilibrium in the usual sense. 
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Game Theory: Lecture 6 Continuous Games 

Continuity Property of �-equilibria 

Proposition (1) 

Let G be a continuous game. Assume that σk σ, �k �, and for each k, σk → →
is an �k -equilibrium of G. Then σ is an �-equilibrium of G. 

Proof: 

For all i ∈ I , and all si ∈ Si , we have


ui (si , σk ) ≤ ui (σk ) + �k ,
−i 

Taking the limit as k ∞ in the preceding relation, and using the →
continuity of the utility functions (together with the convergence of 
probability distributions under weak topology), we obtain, 

ui (si , σ−i ) ≤ ui (σ) + �, 

establishing the result. 
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Game Theory: Lecture 6 Continuous Games 

Closeness of Two Games 

We next define formally the closeness of two strategic form games. 

Definition 

Let G and G � be two strategic form games with 

G = �I , (Si ), (ui )�, G � = �I , (Si ), (ui
�)�. 

Then G � is an α−approximation to G if for all i ∈ I and s ∈ S, we have 

|ui (s) − ui
�(s)| ≤ α. 
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Game Theory: Lecture 6 Continuous Games 

�−equilibria of Close Games 

The next proposition relates the �−equilibria of close games. 

Proposition (2) 

If G � is an α-approximation to G and σ is an �-equilibrium of G �, then σ is 
an (� + 2α)-equilibrium of G. 

Proof: For all i ∈ I and all si ∈ Si , we have 

ui (si , σ−i ) − ui (σ) = ui (si , σ−i ) − ui
�(si , σ−i ) + ui

�(si , σ−i ) − ui
�(σ) 

+ui
�(σ) − ui (σ) 

≤ α + � + α 

= � + 2α. 
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Game Theory: Lecture 6 Continuous Games 

Approximating a Continuous Game with an Essentially 
Finite Game 

The next proposition shows that we can approximate a continuous 
game with an essentially finite game to an arbitrary degree of 
accuracy. 

Proposition (3) 

For any continuous game G and any α > 0, there exists an “essentially 
finite” game which is an α-approximation to G. 
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Game Theory: Lecture 6 Continuous Games 

Proof


Since S is a compact metric space, the utility functions ui are uniformly 
continuous, i.e., for all α > 0, there exists some � > 0 such that 

ui (s) − ui (t) ≤ α for all d(s, t) ≤ �. 

Since Si is a compact metric space, it can be covered with finitely many 
open balls Ui

j , each with radius less than � (assume without loss of 
generality that these balls are disjoint and nonempty). 

Choose an si
j ∈ Ui

j for each i , j . 

Define the “essentially finite” game G � with the utility functions ui
� defined 

as 
I 

ui
�(s) = ui (s1

j , . . . , sI
j ), ∀ s ∈ U j = ∏ Uk

j . 
k=1 

Then for all s ∈ S and all i ∈ I , we have 

|ui
�(s) − ui (s)| ≤ α, 

since d(s, s j ) ≤ � for all j , implying the desired result. 
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Game Theory: Lecture 6 Continuous Games 

Proof of Glicksberg’s Theorem 

We now return to the proof of Glicksberg’s Theorem. Let {αk } be a scalar 
sequence with αk 0.↓ 

For each αk , there exists an “essentially finite” αk -approximation G k 

of G by Proposition 3.


Since G k is “essentially finite” for each k, it follows using Nash’s

Theorem that it has a 0-equilibrium, which we denote by σk .


Then, by Proposition 2, σk is a 2αk -equilibrium of G .


Since Σ is compact, {σk } has a convergent subsequence. Without

loss of generality, we assume that σk σ.
→ 

Since 2αk 0, σk σ, by Proposition 1, it follows that σ is a → →
0-equilibrium of G . 
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Game Theory: Lecture 6 Continuous Games 

Discontinuous Games 

There are many games in which the utility functions are not 
continuous (e.g. price competition models, congestion-competition 
models). 
We next show that for discontinuous games, under some mild 
semicontinuity conditions on the utility functions, it is possible to 
establish the existence of a mixed Nash equilibrium (see [Dasgupta 
and Maskin 86]). 
The key assumption is to allow discontinuities in the utility function 
to occur only on a subset of measure zero, in which a player’s 
strategy is “related” to another player’s strategy. 
To formalize this notion, we introduce the following set: for any two 
players i and j , let D be a finite index set and for d ∈ D, let 
fij

d : Si → Sj be a bijective and continuous function. Then, for each i , 
we define 

S∗(i) = {s ∈ S | ∃ j �= i such that sj = fij
d (si ).} (1) 

13 



Game Theory: Lecture 6 Continuous Games 

Discontinuous Games 

Before stating the theorem, we first introduce some weak continuity conditions. 

Definition 

Let X be a subset of Rn, Xi be a subset of R, and X−i be a subset of Rn−1 . 

(i) A function f : X R is called upper semicontinuous (respectively, lower →
semicontinuous) at a vector x ∈ X if f (x) ≥ lim supk ∞ f (xk )→
(respectively, f (x) ≤ lim infk ∞ f (xk )) for every sequence {xk } ⊂ X that →
converges to x. If f is upper semicontinuous (lower semicontinuous) at every 
x ∈ X , we say that f is upper semicontinuous (lower semicontinuous). 

(ii)	 A function f : Xi × X−i → R is called weakly lower semicontinuous in xi 
over a subset X −

∗ 
i ⊂ X−i , if for all xi there exists λ ∈ [0, 1] such that, for all 

x−i ∈ X −
∗ 
i , 

λ lim inf f (xi
�, x−i ) + (1 − λ) lim inf f (xi

�, x−i ) ≥ f (xi , x−i ). 
x � xi	 x � xii ↑	 i ↓
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Game Theory: Lecture 6 Continuous Games 

Discontinuous Games


Theorem (2) 

[Dasgupta and Maskin] Let Si be a closed interval of R. Assume that ui is

continuous except on a subset S∗∗(i) of the set S∗(i) defined in Eq. (1).

Assume also that ∑n

i=1 ui (s) is upper semicontinuous and that ui (si , s−i )

is bounded and weakly lower semicontinuous in si over the set

{s−i ∈ S−i | (si , s−i ) ∈ S∗∗(i)}. Then the game has a mixed strategy

Nash equilibrium.


The weakly lower semicontinuity condition on the utility functions 
implies that the function ui does not jump up when approaching si 
either from below or above. 

Loosely, this ensures that player i can do almost as well with 
strategies near si as with si , even if his opponents put weight on the 
discontinuity points of ui . 
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Game Theory: Lecture 6 Continuous Games 

Bertrand Competition with Capacity Constraints 

Consider two firms that charge prices p1, p2 ∈ [0, 1] per unit of the 
same good.


Assume that there is unit demand and all customers choose the firm

with the lower price.


If both firms charge the same price, each firm gets half the demand.


All demand has to be supplied.


The payoff functions of each firm is the profit they make (we assume

for simplicity that cost of supplying the good is equal to 0 for both

firms).
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Game Theory: Lecture 6 Continuous Games 

Bertrand Competition with Capacity Constraints 

We have shown before that (p1, p2) = (0, 0) is the unique pure 
strategy Nash equilibrium. 
Assume now that each firm has a capacity constraint of 2/3 units of 
demand: 

Since all demand has to be supplied, this implies that when p1 < p2, 
firm 2 gets 1/3 units of demand). 

It can be seen in this case that the strategy profile (p1, p2) = (0, 0) is 
no longer a pure strategy Nash equilibrium: 

Either firm can increase his price and still have 1/3 units of demand 
due to the capacity constraint on the other firm, thus making positive 
profits. 

It can be established using Theorem 2 that there exists a mixed 
strategy Nash equilibrium. 

Let us next proceed to construct a mixed strategy Nash equilibrium. 
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Game Theory: Lecture 6 Continuous Games 

Bertrand Competition with Capacity Constraints 

We focus on symmetric Nash equilibria, i.e., both firms use the same mixed 
strategy. 

We use the cumulative distribution function F ( ) to represent the mixed ·
strategy used by either firm. 

It can be seen that the expected payoff of player 1, when he chooses p1 and 
firm 2 uses the mixed strategy F ( ), is given by ·

u1(p1, F ( )) = F (p1) 
p1 + (1 − F (p1)) 

2 
p1.·

3 3 

Using the fact that each action in the support of a mixed strategy must yield 
the same payoff to a player at the equilibrium, we obtain for all p in the 
support of F ( ),·

−F (p) 
p 

+ 
2 
p = k,

3 3

for some k ≥ 0. From this we obtain:


3k

F (p) = 2 − . 

p 
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Game Theory: Lecture 6 Continuous Games 

Bertrand Competition with Capacity Constraints 

Note next that the upper support of the mixed strategy must be at p = 1, 
which implies that F (1) = 1. 

Combining with the preceding, we obtain ⎧ ⎨ 0, if 0 ≤ p ≤ 2
1 , 

F (p) = ⎩ 
2 − p 

1 , if 2
1 ≤ p ≤ 1, 

1, if p ≥ 1. 
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Game Theory: Lecture 6 Continuous Games 

Uniqueness of a Pure Strategy Nash Equilibrium in 
Continuous Games 

We have shown in the previous lecture the following result: 
Given a strategic form game �I , (Si ), (ui )�, assume that the strategy 
sets Si are nonempty, convex, and compact sets, ui (s) is continuous in 
s, and ui (si , s−i ) is quasiconcave in si . Then the game �I , (Si ), (ui )�
has a pure strategy Nash equilibrium. 

The next example shows that even under strict convexity assumptions, 
there may be infinitely many pure strategy Nash equilibria. 
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Game Theory: Lecture 6 Continuous Games 

Uniqueness of a Pure Strategy Nash Equilibrium 

Example 

Consider a game with 2 players, Si = [0, 1] for i = 1, 2, and the payoffs 

2 

u1(s1, s2) = s1s2 − 
s1 ,
2 

2 
2 u2(s1, s2) = s1s2 − 

s
. 

2 

Note that ui (s1, s2) is strictly concave in si . It can be seen in this example 
that the best response correspondences (which are unique-valued) are 
given by 

B1(s2) = s2, B2(s1) = s1. 

Plotting the best response curves shows that any pure strategy profile 
(s1, s2) = (x , x) for x ∈ [0, 1] is a pure strategy Nash equilibrium. 
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Game Theory: Lecture 6 Continuous Games 

Uniqueness of a Pure Strategy Nash Equilibrium 

We will next establish conditions that guarantee that a strategic form 
game has a unique pure strategy Nash equilibrium, following the 
classical paper [Rosen 65]. 

Notation: 
Given a scalar-valued function f : Rn R, we use the notation �→ 
�f (x) to denote the gradient vector of f at point x , i.e., � �T 

�f (x) = 
∂f (x) 

, . . . , 
∂f (x) 

. 
∂x1 ∂xn 

Given a scalar-valued function u : ∏I
i=1 R

mi �→ R, we use the 
notation �i u(x) to denote the gradient vector of u with respect to xi 

at point x , i.e., � �T 

�i u(x) = 
∂u

∂x

(

i 

x
1 

) 
, . . . , 

∂

∂

u

x 
(

i
m
x

i 

) 
. (2) 
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Game Theory: Lecture 6 Continuous Games 

Optimality Conditions for Nonlinear Optimization Problems 

Theorem (3) 

(Karush-Kuhn-Tucker conditions) Let x∗ be an optimal solution of the 
optimization problem 

maximize f (x) 
subject to gj (x) ≥ 0, j = 1, . . . , r , 

where the cost function f : Rn �→ R and the constraint functions gj : Rn �→ R 
are continuously differentiable. Denote the set of active constraints at x∗ as 
A(x∗) = {j = 1, . . . , r | gj (x∗) = 0}. Assume that the active constraint 
gradients, �gj (x∗), j ∈ A(x∗), are linearly independent vectors. Then, there 
exists a nonnegative vector λ∗ ∈ Rr (Lagrange multiplier vector) such that 

r 
�f (x∗) + ∑ λj

∗�gj (x∗) = 0, 
j=1 

λj 
∗gj (x∗) = 0, ∀ j = 1, . . . , r . (3) 
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Game Theory: Lecture 6 Continuous Games 

Optimality Conditions for Nonlinear Optimization Problems 

For convex optimization problems (i.e., minimizing a convex function (or 
maximizing a concave function) over a convex constraint set), we can provide 
necessary and sufficient conditions for the optimality of a feasible solution: 

Theorem (4) 

Consider the optimization problem

maximize f (x)

subject to gj (x) ≥ 0, j = 1, . . . , r , 

where the cost function f : Rn �→ R and the constraint functions gj : Rn �→ R 
are concave functions. Assume also that there exists some ¯ x) > 0x such that gj ( ̄
for all j = 1, . . . , r . Then a vector x∗ ∈ Rn is an optimal solution of the 
preceding problem if and only if gj (x∗) ≥ 0 for all j = 1, . . . , r , and there exists a 
nonnegative vector λ∗ ∈ Rr (Lagrange multiplier vector) such that 

r 
�f (x∗) + ∑ λj 

∗�gj (x∗) = 0, 
j=1 

λj 
∗gj (x∗) = 0, ∀ j = 1, . . . , r . 
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Game Theory: Lecture 6 Continuous Games 

Uniqueness of a Pure Strategy Nash Equilibrium 

We now return to the analysis of the uniqueness of a pure strategy 
equilibrium in strategic form games. 

We assume that for player i ∈ I , the strategy set Si is given by 

Si = {xi ∈ Rmi | hi (xi ) ≥ 0}, (4) 

where hi : Rmi R is a concave function. �→ 

Since hi is concave, it follows that the set Si is a convex set (exercise!). 

Therefore the set of strategy profiles S = ∏I
i=1 Si ⊂ ∏i

I 
=1 R

mi , being a 
Cartesian product of convex sets, is a convex set. 

Given these strategy sets, a vector x∗ ∈ ∏I 
=1 R

mi is a pure strategy Nash i
equilibrium if and only if for all i ∈ I , xi 

∗ is an optimal solution of 

maximizeyi ∈Rmi 

subject to 

ui (yi , x
∗ 
−i ) 

hi (yi ) ≥ 0. 

(5) 

We use the notation �u(x) to denote 

�u(x) = [�1u1(x), . . . , �I uI (x)]T . (6) 
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Game Theory: Lecture 6 Continuous Games 

Uniqueness of a Pure Strategy Nash Equilibrium 

We introduce the key condition for uniqueness of a pure strategy Nash 
equilibrium. 

Definition 

We say that the payoff functions (u1, . . . , uI ) are diagonally strictly concave for 
x ∈ S, if for every x∗, x̄ ∈ S, we have 

(x̄ − x∗)T �u(x∗) + (x∗ − x̄)T �u(x̄) > 0. 

Theorem 

Consider a strategic form game �I , (Si ), (ui )�. For all i ∈ I , assume that the 
strategy sets Si are given by Eq. (4), where hi is a concave function, and there 
exists some x̃i ∈ Rmi such that hi (x̃i ) > 0. Assume also that the payoff functions 
(u1, . . . , uI ) are diagonally strictly concave for x ∈ S. Then the game has a 
unique pure strategy Nash equilibrium. 
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Game Theory: Lecture 6 Continuous Games 

Proof 

Assume that there are two distinct pure strategy Nash equilibria. 

Since for each i ∈ I , both xi 
∗ and x̄i must be an optimal solution for an 

optimization problem of the form (5), Theorem 4 implies the existence of 
nonnegative vectors λ∗ = [λ1

∗ , . . . , λI 
∗]T and λ ¯ = [ λ̄ 

1, . . . , λ̄ 
I ]T such that 

for all i ∈ I , we have 

�i ui (x∗) + λi 
∗�hi (xi 

∗) = 0, (7) 

λ∗ 
i hi (xi 

∗) = 0, (8) 

and 
�i ui (x̄) + λ̄ 

i �hi (x̄i ) = 0, (9) 

λ̄ 
i hi (x̄i ) = 0. (10) 
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Game Theory: Lecture 6 Continuous Games 

Proof 

xi − xi 
∗

x − x∗)T x)T 

∑ 
¯
∗+ −x xi i 

∗> −x xi i 

¯

¯

¯

∑

∑ 

¯

Multiplying Eqs. (7) and (9) by ( )T and (xi 
∗ xi )T 

)x

¯

¯

¯

¯ 
¯

i∈I

xi )T (xi 
∗∑ 

i∈I 

T( ) ( ∗hλ � x xi i i i 

¯ (hλ �i i 

¯

¯

respectively, and 

xi ) 

xi ), 

−

adding over all i ∈ I , we obtain 

0 =
 (
 �u(x∗) + (x∗ − �u( (11) 

)T (λi 
∗�hi (xi 

∗ ) +
 −

i∈I 

i∈I 
)T (λi 

∗�hi (xi 
∗ ) +
 −


¯

where to get the strict inequality, we used the assumption that the payoff 

Since the h are concave functions, we have i 

¯

functions are diagonally strictly concave for x ∈ S . 

xi − xi 
∗ xi ).hi (xi 

∗) + �hi (xi 
∗)T ( ) ≥ hi (
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Game Theory: Lecture 6 Continuous Games 

Proof 

Using the preceding together with λ∗ 
i > 0, we obtain for all i , 

xi − xi 
∗ xi ) − hi (xi 

∗¯
)xi ¯

¯λi 
∗�hi (xi 

∗)T ( ) ≥ λi 
∗(hi ( ))


=
 λi 
∗hi (

≥ 0, 

where to get the equality we used Eq. (8), and to get the last inequality, we 
xi ) ≥ 0.¯used the facts λi 

∗ 

Similarly, we have

> 0 and hi (

¯λi �hi (xi )T (xi 
∗ xi ) ≥ 0.¯

Combining the preceding two relations with the relation in (11) yields a 
contradiction, thus concluding the proof. 

¯ −
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Game Theory: Lecture 6 Continuous Games 

Sufficient Condition for Diagonal Strict Concavity 

Let U(x) denote the Jacobian of �u(x) [see Eq. (6)]. In particular, if the xi 
are all 1-dimensional, then U(x) is given by ⎛ ⎞ 

∂2u1(x) ∂2u1(x) 
∂x1

2 ∂x1∂x2 
· · · 

∂2u2(x) 
⎜⎜⎜⎝ 

⎟⎟⎟⎠ 
U(x) = . . . . 

∂x2∂x1 
. . . 

Proposition 

For all i ∈ I , assume that the strategy sets Si are given by Eq. (4), where hi is a 
concave function. Assume that the symmetric matrix (U(x) + UT (x)) is 
negative definite for all x ∈ S, i.e., for all x ∈ S, we have 

y T (U(x) + UT (x))y < 0, ∀ y �= 0. 

Then, the payoff functions (u1, . . . , uI ) are diagonally strictly concave for x ∈ S. 
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Game Theory: Lecture 6 Continuous Games 

Proof 

x ∈ S . ¯Let x∗, Consider the vector 

Since S is a convex set, x(λ) ∈ S . 

Because U(x) is the Jacobian of �u(x), we have 

d dx(λ) 
dλ 
�u(x(λ)) = U(x(λ)) 

d(λ) 

x̄ ,x(λ) = λx∗ + (1 − λ) for some λ ∈ [0, 1]. 

¯

x̄), 

x). 

= U(x(λ))(x∗ −

x̄)dλ = �u(x∗) −�u(
or � 1 

U(x(λ))(x∗ −
0 
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Game Theory: Lecture 6 Continuous Games 

Proof 

Multiplying the preceding by (

x − x∗)T¯

¯

x − x∗)T 

�u(x∗) + (x∗ − x)T 

x)T [U(x(λ)) + UT (x(λ))](x∗ − x)dλ¯

¯

¯� 1 

yields 

x)¯(
 �u(
1 

(x∗ −= − 
2 0 

> 0, 

where to get the strict inequality we used the assumption that the 
symmetric matrix (U(x) + UT (x)) is negative definite for all x ∈ S . 
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