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Game Theory: Lecture 6 Introduction

Outline
@ Continuous Games
o Existence of a Mixed Nash Equilibrium in Continuous Games
(Glicksberg's Theorem)
@ Existence of a Mixed Nash Equilibrium with Discontinuous Payoffs
@ Construction of a Mixed Nash Equilibrium with Infinite Strategy Sets
@ Uniqueness of a Pure Nash Equilibrium for Continuous Games
@ Reading:

e Myerson, Chapter 3.

o Fudenberg and Tirole, Sections 12.2, 12.3.

e Rosen J.B., “Existence and uniqueness of equilibrium points for
concave N-person games,” Econometrica, vol. 33, no. 3, 1965.



Game Theory: Lecture 6 Continuous Games

Continuous Games

@ We consider games in which players may have infinitely many pure
strategies.

Definition

A continuous game is a game (Z, (S;), (u;)) where T is a finite set, the
S; are nonempty compact metric spaces, and the u; : S — R are
continuous functions.

@ We next state the analogue of Nash's Theorem for continuous games.
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Existence of a Mixed Nash Equilibrium

Theorem
(Glicksberg) Every continuous game has a mixed strategy Nash equilibrium. J

@ With continuous strategy spaces, space of mixed strategies infinite
dimensional, therefore we need a more powerful fixed point theorem than
the version of Kakutani we have used before.

@ Here we adopt an alternative approach to prove Glicksberg's Theorem,
which can be summarized as follows:

o We approximate the original game with a sequence of finite games,
which correspond to successively finer discretization of the original
game.

e We use Nash's Theorem to produce an equilibrium for each
approximation.

o We use the weak topology and the continuity assumptions to show that
these converge to an equilibrium of the original game.



Game Theory: Lecture 6 Continuous Games

Closeness of Two Games

@ Let u=1(uy,...,uy) and & = (@, ..., ) be two profiles of utility functions
defined on S such that for each i € Z, the functions u; : S — R and
U; : S — R are bounded (measurable) functions.

@ We define the distance between the utility function profiles v and T as

maxsup |ui(s) — Ti(s)].
i€l se§

@ Consider two strategic form games defined by two profiles of utility functions:

G=(Z.(5).(u)),  G=(Z.(5) (m)).
@ If o is a mixed strategy Nash equilibrium of G, then ¢ need not be a mixed
strategy Nash equilibrium of G.
@ Even if u and @ are very close, the equilibria of G and G may be far apart.
o For example, assume there is only one player, S; = [0, 1], u1(s1) = €51,
and @11 (s1) = —es1, where € > 0 is a sufficiently small scalar. The
unique equilibrium of G is s; = 1, and the unique equilibrium of G is
s] = 0, even if the distance between v and @ is only 2¢.



Game Theory: Lecture 6 Continuous Games

Closeness of Two Games and e-Equilibrium

@ However, if u and @ are very close, there is a sense in which the equilibria of
G are “almost” equilibria of G.

Definition

(e-equilibrium) Given € > 0, a mixed strategy o € % is called an e-equilibrium if
foralli € 1 and s; € S;,

U,'(S,',U'_') < U,‘((T,',(T_,‘> + €.

Obviously, when € = 0, an e-equilibrium is a Nash equilibrium in the usual sense.
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Continuity Property of e-equilibria

Proposition (1)

Let G be a continuous game. Assume that ok — o, €k — €, and for each k, o*

is an eX-equilibrium of G. Then o is an e-equilibrium of G.

Proof:

@ Foralli € Z, and all s5; € S;, we have
ui(si, o) < ui(c¥) + €,

@ Taking the limit as k — oo in the preceding relation, and using the
continuity of the utility functions (together with the convergence of
probability distributions under weak topology), we obtain,

ui(sj,o_j) < ui(0) + €,

establishing the result.
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Closeness of Two Games

@ We next define formally the closeness of two strategic form games.

Definition

Let G and G’ be two strategic form games with
G=(Z,(S) (u)), G =(T,(S) (u)).
Then G’ is an a—approximation to G if forall i € T and s € S, we have

|ui(s) — ui(s)] < a.
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€—equilibria of Close Games

@ The next proposition relates the e—equilibria of close games.

Proposition (2)

If G’ is an a-approximation to G and o is an e-equilibrium of G’, then o is
an (e + 2w)-equilibrium of G.

Proof: For all i € Z and all s; € S;, we have

u,'(S,',O',,') — u,'(O') = u,'(S,',(T,;) — uf(s,', 0'7,') + U,{(S;,O',,') — u,{(U')
+uj(o) — ui(o)
< a+e+tua

= €+ 2u.
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Approximating a Continuous Game with an Essentially
Finite Game

@ The next proposition shows that we can approximate a continuous

game with an essentially finite game to an arbitrary degree of
accuracy.

Proposition (3)

For any continuous game G and any o > 0, there exists an “essentially
finite” game which is an a-approximation to G.
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Proof

@ Since S is a compact metric space, the utility functions u; are uniformly
continuous, i.e., for all & > 0, there exists some € > 0 such that

ui(s) —ui(t) <a  forall d(s, t) <e.

@ Since S; is a compact metric space, it can be covered with finitely many

open balls U{ each with radius less than € (assume without loss of
generality that these balls are disjoint and nonempty).

@ Choose an slf € U{ for each /.

@ Define the “essentially finite” game G’ with the utility functions uf defined
as

. . . / .
u’-(s):u;(s{,...,s;), VSEUJZHU{(.
k=1

@ Then for all s € S and all i € Z, we have
lui(s) = ui(s)| < a,

since d(s, 5’) < € for all j, implying the desired result.
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Proof of Glicksberg's Theorem

We now return to the proof of Glicksberg's Theorem. Let {aX} be a scalar
sequence with a¥ | 0.

o For each aX, there exists an “essentially finite" a*-approximation G*
of G by Proposition 3.

@ Since G¥ is “essentially finite” for each k, it follows using Nash's
Theorem that it has a 0-equilibrium, which we denote by .

@ Then, by Proposition 2, o is a 2a-equilibrium of G.

@ Since T is compact, {o*} has a convergent subsequence. Without

loss of generality, we assume that ¥ — 0.

@ Since 20k — 0, ok — 0, by Proposition 1, it follows that ¢ is a
0-equilibrium of G.
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Discontinuous Games

@ There are many games in which the utility functions are not
continuous (e.g. price competition models, congestion-competition
models).

@ We next show that for discontinuous games, under some mild
semicontinuity conditions on the utility functions, it is possible to
establish the existence of a mixed Nash equilibrium (see [Dasgupta
and Maskin 86]).

@ The key assumption is to allow discontinuities in the utility function
to occur only on a subset of measure zero, in which a player’s
strategy is “related” to another player's strategy.

@ To formalize this notion, we introduce the following set: for any two
players i and j, let D be a finite index set and for d € D, let
fijd : S — 5; be a bijective and continuous function. Then, for each i,
we define

S*(i)={s€ S| 3j+#isuchthats=f(s).} (1)

13
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Discontinuous Games

Before stating the theorem, we first introduce some weak continuity conditions.
Definition
Let X be a subset of R", X; be a subset of R, and X_; be a subset of R" 1.

(i) A function f : X — R is called upper semicontinuous (respectively, lower
semicontinuous) at a vector x € X if f(x) > limsupy_e f(xk)
(respectively, f(x) <liminfy_ o f(xx)) for every sequence {xx} C X that
converges to x. If f is upper semicontinuous (lower semicontinuous) at every
x € X, we say that f is upper semicontinuous (lower semicontinuous).

(ii) A function f : X; x X_; — R is called weakly lower semicontinuous in x;
over a subset Xf,- C X_j, if for all x; there exists A € [0, 1] such that, for all
X_j € Xi,',

Aliminf £(x!, x_;) 4+ (1 — A) liminf f(x}, x_;) > f(x;, x_;).

X! X! x;
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Discontinuous Games

Theorem (2)

[Dasgupta and Maskin] Let S; be a closed interval of R. Assume that u; is
continuous except on a subset S**(i) of the set S*(i) defined in Eq. (1).
Assume also that Y[ ; ui(s) is upper semicontinuous and that u;(s;, s_;)
is bounded and weakly lower semicontinuous in s; over the set

{s_i€ S_i| (si,s—i) € S*™(i)}. Then the game has a mixed strategy
Nash equilibrium.

@ The weakly lower semicontinuity condition on the utility functions
implies that the function u; does not jump up when approaching s;
either from below or above.

@ Loosely, this ensures that player i can do almost as well with
strategies near s; as with s;, even if his opponents put weight on the
discontinuity points of u;.
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Bertrand Competition with Capacity Constraints

o Consider two firms that charge prices p1, p2 € [0, 1] per unit of the
same good.

@ Assume that there is unit demand and all customers choose the firm
with the lower price.

o If both firms charge the same price, each firm gets half the demand.
@ All demand has to be supplied.

@ The payoff functions of each firm is the profit they make (we assume
for simplicity that cost of supplying the good is equal to 0 for both
firms).
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Bertrand Competition with Capacity Constraints

@ We have shown before that (pi, p2) = (0,0) is the unique pure
strategy Nash equilibrium.

@ Assume now that each firm has a capacity constraint of 2/3 units of
demand:

e Since all demand has to be supplied, this implies that when p; < po,
firm 2 gets 1/3 units of demand).

@ It can be seen in this case that the strategy profile (p1, p2) = (0,0) is
no longer a pure strategy Nash equilibrium:

o Either firm can increase his price and still have 1/3 units of demand
due to the capacity constraint on the other firm, thus making positive
profits.

@ It can be established using Theorem 2 that there exists a mixed
strategy Nash equilibrium.

@ Let us next proceed to construct a mixed strategy Nash equilibrium.

17
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Bertrand Competition with Capacity Constraints

@ We focus on symmetric Nash equilibria, i.e., both firms use the same mixed
strategy.

@ We use the cumulative distribution function F(-) to represent the mixed
strategy used by either firm.

@ It can be seen that the expected payoff of player 1, when he chooses p; and
firm 2 uses the mixed strategy F(-), is given by

ur(p1, F()) = F(Pl)% +(1— F(Pl))gpl-

@ Using the fact that each action in the support of a mixed strategy must yield
the same payoff to a player at the equilibrium, we obtain for all p in the
support of F(+),

p 2
—F(p e+ p=k
()3 + 3P =k

for some k > 0. From this we obtain:

F(p) :2—?.

18
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Bertrand Competition with Capacity Constraints

@ Note next that the upper support of the mixed strategy must be at p =1,
which implies that F(1) = 1.

@ Combining with the preceding, we obtain

0, if0<p<y,
F(p) 2 % 1f%§p<1
1,
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Uniqueness of a Pure Strategy Nash Equilibrium in
Continuous Games

@ We have shown in the previous lecture the following result:
o Given a strategic form game (Z, (S;), (uj)), assume that the strategy
sets S; are nonempty, convex, and compact sets, u,-(s) is continuous in
s, and u;(s;, s_j) is quasiconcave in s;. Then the game (Z, (S5;), (u;))
has a pure strategy Nash equilibrium.
@ The next example shows that even under strict convexity assumptions,
there may be infinitely many pure strategy Nash equilibria.
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Uniqueness of a Pure Strategy Nash Equilibrium

Example

Consider a game with 2 players, S; = [0,1] for i = 1,2, and the payoffs

s
U1(51. 52) = 5152 — o
2
S.
U2(5]_, 52) = 515 — 52

Note that u;i(s1, sp) is strictly concave in s;. It can be seen in this example
that the best response correspondences (which are unique-valued) are
given by

81(52) = 57, 32(51) = 51.

Plotting the best response curves shows that any pure strategy profile
(s1,5) = (x,x) for x € [0,1] is a pure strategy Nash equilibrium.

21
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Uniqueness of a Pure Strategy Nash Equilibrium

@ We will next establish conditions that guarantee that a strategic form
game has a unique pure strategy Nash equilibrium, following the
classical paper [Rosen 65].

Notation:

@ Given a scalar-valued function f : R" — IR, we use the notation
Vf(x) to denote the gradient vector of f at point x, i.e.,

VF(x) = [ag)(:;)agix)} "

o Given a scalar-valued function u: []'_; R™ — R, we use the
notation V;u(x) to denote the gradient vector of u with respect to x;
at point x, i.e.,

T
du(x) au(x)] . )

Viu(x) = [ Sl o

]
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Optimality Conditions for Nonlinear Optimization Problem

Theorem (3)

(Karush-Kuhn-Tucker conditions) Let x* be an optimal solution of the
optimization problem

maximize  f(x)

subject to gj(x) >0, j=1....r,

where the cost function f : R" +— R and the constraint functions g; : R" — R
are continuously differentiable. Denote the set of active constraints at x* as
Ax)={=1,..., r | gj(x*) = 0}. Assume that the active constraint
gradients, Vgj(x*), j € A(x"), are linearly independent vectors. Then, there
exists a nonnegative vector A* € R" (Lagrange multiplier vector) such that

r
VI(x*)+ Z )\;ngj(x*) =0,
j=1

)Ufgj(x*):0, Vi=1,...,r. 3
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Optimality Conditions for Nonlinear Optimization Problem

For convex optimization problems (i.e., minimizing a convex function (or
maximizing a concave function) over a convex constraint set), we can provide
necessary and sufficient conditions for the optimality of a feasible solution:

Theorem (4)

Consider the optimization problem
maximize  f(x)

subject to gj(x) >0, j=1,...,r,

where the cost function f : R" — IR and the constraint functions g; : R" — R
are concave functions. Assume also that there exists some X such that gj(x) > 0
forall j=1,...,r. Then a vector x* € R" is an optimal solution of the
preceding prob/em if and only if gj(x*) > 0 for all j = 1,...,r, and there exists a
nonnegative vector A* € R" (| Lagrange multiplier vector) such that

Vi (x +ZA*VgJ ) =0,
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Uniqueness of a Pure Strategy Nash Equilibrium

@ We now return to the analysis of the uniqueness of a pure strategy
equilibrium in strategic form games.

@ We assume that for player i € Z, the strategy set S; is given by
Si = {xi € R™ [ hi(x;) = 0}, (4)
where h; : R™ — IR is a concave function.
@ Since h; is concave, it follows that the set S; is a convex set (exercise!).

@ Therefore the set of strategy profiles S = H,I':1 S C Hle IR™i, being a
Cartesian product of convex sets, is a convex set.

@ Given these strategy sets, a vector x* € Hf:l IR™i is a pure strategy Nash
equilibrium if and only if for all i € Z, x is an optimal solution of

maximizeyiE]Rm; Ui()/ivxii) (5)
subject to  h;(y;) > 0.

@ We use the notation Vu(x) to denote

Vu(x) = [Viui(x), ..., Viu(x)] . (6)
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Uniqueness of a Pure Strategy Nash Equilibrium

@ We introduce the key condition for uniqueness of a pure strategy Nash
equilibrium.
Definition

We say that the payoff functions (uq, ..., uy) are diagonally strictly concave for
x € S, if for every x*,x € S, we have

(x = x)TVu(x*) + (x* = %) TVu(x) > 0.

Theorem

Consider a strategic form game (Z, (S;), (u;)). For all i € Z, assume that the
strategy sets S; are given by Eq. (4), where h; is a concave function, and there
exists some X; € R™i such that h;(%;) > 0. Assume also that the payoff functions
(u1,...,uy) are diagonally strictly concave for x € S. Then the game has a
unique pure strategy Nash equilibrium.
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Proof

@ Assume that there are two distinct pure strategy Nash equilibria.

@ Since for each i € Z, both x;* and X; must be an optimal solution for an
optimization problem of the form (5), Theorem 4 implies the existence of
nonnegative vectors A* = [A},...,A}]T and A = [Ay,...,A/]T such that
for all i € Z, we have

Viui(x") + A7 Vhi(x) =0, (7)
Aihi(xi) =0, (8)
and
Viu; ()_(> + /_\thl <)_<I) =0, (9)
}_\/hl ()_(i) =0 (10)

27



Game Theory: Lecture 6 Continuous Games

Proof

@ Multiplying Egs. (7) and (9) by (x; — XI-*)T and (x/" — %;) T respectively, and
adding over all i € Z, we obtain

0 = (x-— X*)TVU(X*) + (x* — X)TVU(S() (11)
+ Y AVRGH T (R = x) + Y AVRi(R) T (¢ = %)
i€ €T
> Y AVhiGH) T (%= x) + Y AVhi()T (5 = %),
i€l i€l

where to get the strict inequality, we used the assumption that the payoff
functions are diagonally strictly concave for x € S.

@ Since the h; are concave functions, we have

hi(x7) + Vhi(x) T (% — x7) > hi(%).
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Proof

@ Using the preceding together with A7 > 0, we obtain for all /,

AiVhi(x) T (i —xF) = Af(hi(x) — hi(x}))
> 0,

where to get the equality we used Eq. (8), and to get the last inequality, we

used the facts A} > 0 and h;(x;) > 0.
@ Similarly, we have

)_\,'Vh;()_(,')T(X;( — )_<,') > 0.

@ Combining the preceding two relations with the relation in (11) yields a
contradiction, thus concluding the proof.
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Sufficient Condition for Diagonal Strict Concavity

@ Let U(x) denote the Jacobian of Vu(x) [see Eq. (6)]. In particular, if the x;
are all 1-dimensional, then U(x) is given by

ui(x)  Pur(x)
ox? 0x10x2

Ulx) = | Pux)

aX2 axl

Proposition

For all i € I, assume that the strategy sets S; are given by Eq. (4), where h; is a
concave function. Assume that the symmetric matrix (U(x) + UT (x)) is
negative definite for all x € S, i.e., for all x € S, we have

yT(U) +UT(x))y <0, Vy#0.

Then, the payoff functions (u1, ..., u;) are diagonally strictly concave for x € S. -
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Proof

@ Let x*, x € S. Consider the vector
x(A) = A"+ (1= A)x, for some A € [0, 1].
Since S is a convex set, x(A) € S.
@ Because U(x) is the Jacobian of Vu(x), we have

d B dx(7)
V) = NG

= U(x(A)(x" =x),

or
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Proof

@ Multiplying the preceding by (x — x*)7T yields

(x—x)TVu(x*) + (x*—=x)"Vu(x)
1 1

- (x* — %)

> 0,

\'

[U(x(A) + UT (x(A)](x" —x)dA

where to get the strict inequality we used the assumption that the
symmetric matrix (U(x) + U7 (x)) is negative definite for all x € S.
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