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@ Uniqueness of a Pure Nash Equilibrium for Continuous Games

@ Supermodular Games

@ Reading:
e Rosen J.B., “Existence and uniqueness of equilibrium points for
concave N-person games,” Econometrica, vol. 33, no. 3, 1965.
e Fudenberg and Tirole, Section 12.3.
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Uniqueness of a Pure Strategy Nash Equilibrium in
Continuous Games

@ We have shown in the previous lecture the following result:
o Given a strategic form game (Z, (S;), (uj)), assume that the strategy
sets S; are nonempty, convex, and compact sets, u,-(s) is continuous in
s, and u;(s;, s_j) is quasiconcave in s;. Then the game (Z, (S5;), (u;))
has a pure strategy Nash equilibrium.
@ We have seen an example that shows that even under strict convexity
assumptions, there may be infinitely many pure strategy Nash
equilibria.



Uniqueness of a Pure Strategy Equilibrium
Uniqueness of a Pure Strategy Nash Equilibrium

@ We will next establish conditions that guarantee that a strategic form
game has a unique pure strategy Nash equilibrium, following the
classical paper [Rosen 65].

Notation:
@ Given a scalar-valued function f : R" — IR, we use the notation
Vf(x) to denote the gradient vector of f at point x, i.e.,

9f (x) af(x)} "

ox1 ' 9x,

VF(x) = [

o Given a scalar-valued function u: []'_; R™ — R, we use the
notation V;u(x) to denote the gradient vector of u with respect to x;
at point x, i.e.,

Viu(x) =

[au(x) au(x)] T_ O

axl-l T ox™



Uniqueness of a Pure Strategy Equilibrium
Optimality Conditions for Nonlinear Optimization Problem

Theorem (3)

(Karush-Kuhn-Tucker conditions) Let x* be an optimal solution of the
optimization problem

maximize  f(x)

subject to gj(x) >0, j=1....r,

where the cost function f : R" +— R and the constraint functions g; : R" — R
are continuously differentiable. Denote the set of active constraints at x* as
Ax)={=1,..., r | gj(x*) = 0}. Assume that the active constraint
gradients, Vgj(x*), j € A(x"), are linearly independent vectors. Then, there
exists a nonnegative vector A* € R" (Lagrange multiplier vector) such that

r
VI(x*)+ Z )\;ngj(x*) =0,
j=1

)Ufgj(x*):0, Vi=1,...,r. (2
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Optimality Conditions for Nonlinear Optimization Problem

For convex optimization problems (i.e., minimizing a convex function (or
maximizing a concave function) over a convex constraint set), we can provide
necessary and sufficient conditions for the optimality of a feasible solution:

Theorem (4)
Consider the optimization problem
maximize  f(x)

subject to gj(x) >0, j=1,...,r,

where the cost function f : R" — IR and the constraint functions g; : R" — R
are concave functions. Assume also that there exists some X such that gj(x) > 0
forall j=1,...,r. Then a vector x* € R" is an optimal solution of the
preceding prob/em if and only if gj(x*) > 0 for all j = 1,...,r, and there exists a
nonnegative vector A* € R" (| Lagrange multiplier vector) such that

Vi (x +ZA*VgJ ) =0,



Uniqueness of a Pure Strategy Equilibrium
Uniqueness of a Pure Strategy Nash Equilibrium

@ We now return to the analysis of the uniqueness of a pure strategy
equilibrium in strategic form games.

@ We assume that for player i € Z, the strategy set S; is given by
Si = {x € R™ | hi(x;) = 0}, (3)
where h; : R™ — IR is a concave function.
@ Since h; is concave, it follows that the set S; is a convex set (exercise!).

@ Therefore the set of strategy profiles S = H,I':1 S C Hle IR™i, being a
Cartesian product of convex sets, is a convex set.

@ Given these strategy sets, a vector x* € Hf:l IR™i is a pure strategy Nash
equilibrium if and only if for all i € Z, x is an optimal solution of

maximizeyiE]Rm; u; ()/iv Xii) (4)
subject to  h;(y;) > 0.

@ We use the notation Vu(x) to denote

Vu(x) = [Viui(x), ..., Viu(x)] . (5)
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Uniqueness of a Pure Strategy Nash Equilibrium

@ We introduce the key condition for uniqueness of a pure strategy Nash
equilibrium.
Definition

We say that the payoff functions (uq, ..., uy) are diagonally strictly concave for
x € S, if for every x*,x € S, we have

(x = x)TVu(x*) + (x* = %) TVu(x) > 0.

Theorem

Consider a strategic form game (Z, (S;), (u;)). For all i € Z, assume that the
strategy sets S; are given by Eq. (3), where h; is a concave function, and there
exists some X; € R™i such that h;(%;) > 0. Assume also that the payoff functions
(u1,...,uy) are diagonally strictly concave for x € S. Then the game has a
unique pure strategy Nash equilibrium.
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Proof

@ Assume that there are two distinct pure strategy Nash equilibria.

@ Since for each i € Z, both x;* and X; must be an optimal solution for an
optimization problem of the form (4), Theorem 2 implies the existence of
nonnegative vectors A* = [A},...,A}]T and A = [Ay,...,A/]T such that
for all i € Z, we have

Viui(x") + A7 Vhi(x) =0, (6)
Aihi(xi) =0, (7)
and
Viu; ()_(> + /_\thl <)_<I) =0, (8)
}_\/hl ()_(i) =0 (9)
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Proof

@ Multiplying Egs. (6) and (8) by (x; — XI-*)T and (x/" — %;) T respectively, and
adding over all i € Z, we obtain

0 = (x-— X*)TVU(X*) + (x* — X)TVU(S() (10)
+ Y AVRGH T (R = x) + Y AVRi(R) T (¢ = %)
i€ €T
> Y AVhiGH) T (%= x) + Y AVhi()T (5 = %),
i€l i€l

where to get the strict inequality, we used the assumption that the payoff
functions are diagonally strictly concave for x € S.

@ Since the h; are concave functions, we have

hi(x7) + Vhi(x) T (% — x7) > hi(%).

10
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Proof

@ Using the preceding together with A7 > 0, we obtain for all /,

AiVhi(x) T (i —xF) = Af(hi(x) — hi(x}))
> 0,

where to get the equality we used Eq. (7), and to get the last inequality, we
used the facts A} > 0 and h;(x;) > 0.

@ Similarly, we have B
)\,'Vh;()_(,')T(X;( — )_<,') > 0.

@ Combining the preceding two relations with the relation in (10) yields a
contradiction, thus concluding the proof.

11
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Sufficient Condition for Diagonal Strict Concavity

@ Let U(x) denote the Jacobian of Vu(x) [see Eq. (5)]. In particular, if the x;
are all 1-dimensional, then U(x) is given by

ui(x)  Pur(x)
ox? 0x10x2

Ulx) = | Pux)

aX2 axl

Proposition

For all i € I, assume that the strategy sets S; are given by Eq. (3), where h; is a
concave function. Assume that the symmetric matrix (U(x) + UT (x)) is
negative definite for all x € S, i.e., for all x € S, we have

yT(U) +UT(x))y <0, Vy#0.

Then, the payoff functions (u1, ..., u;) are diagonally strictly concave for x € S. -

12
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Proof

@ Let x*, x € S. Consider the vector
x(A) = A"+ (1= A)x, for some A € [0, 1].

Since S is a convex set, x(A) € S.

@ Because U(x) is the Jacobian of Vu(x), we have

d
T Vulx(d) = Ulx(A))

or

13
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Proof

@ Multiplying the preceding by (x — x*)7T yields

(x—x)TVu(x*) + (x*—=x)"Vu(x)
1 1

- (x* — %)

> 0,

\'

[U(x(A) + UT (x(A)](x" —x)dA

where to get the strict inequality we used the assumption that the
symmetric matrix (U(x) + UT (x)) is negative definite for all x € S.

14



Supermodular Games

@ Supermodular games are those characterized by strategic complementarities

@ Informally, this means that the marginal utility of increasing a player’s
strategy raises with increases in the other players’ strategies.

e Implication = best response of a player is a nondecreasing function of
other players’ strategies

@ Why interesting?

e They arise in many models.

o Existence of a pure strategy equilibrium without requiring the
quasi-concavity of the payoff functions.

e Many solution concepts yield the same predictions.

e The equilibrium set has a smallest and a largest element.

o They have nice sensitivity (or comparative statics) properties and
behave well under a variety of distributed dynamic rules.

@ Much of the theory is due to [Topkis 79, 98], [Milgrom and Roberts 90],
[Milgrom and Shannon 94], and [Vives 90, 01].

15
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Lattices and Tarski's Theorem

@ The machinery needed to study supermodular games is lattice theory and
monotonicity results in lattice programming.

e Methods used are non-topological and they exploit order properties

@ We first briefly summarize some preliminaries related to lattices.

Definition
@ Given a set S and a binary relation >, the pair (S, >) is a partially ordered
set if > is reflexive (x > x for all x € S), transitive (x > y andy > z
implies that x > z), and antisymmetric (x > y and y > x implies that
x=y)
® A partially ordered set (S,>) is (completely) ordered if for x € S and
y €S, eitherx > y ory > x. »

16




Lattices
Definition

A lattice is a partially ordered set (S,>) s.t. any two elements x, y have a least
upper bound (supremum), sups(x,y) = inf{z € S|z > x, z > y}, and a greatest
lower bound (infimum), infs(x,y) =sup{z € S|z < x, z <y} in the set.

@ Supremum of {x, y} is denoted by x \V y and is called the join of x and y.
@ Infimum of {x,y} is denoted by x A y and is called the meet of x and y.
Examples:

@ Any interval of the real line with the usual order is a lattice, since any two
points have a supremum and infimum in the interval.

@ However, the set S C R?, S = {(1,0),(0,1)}, is not a lattice with the
vector ordering (the usual componentwise ordering: x < y if and only if
x; < y; for any i), since (1,0) and (0, 1) have no joint upper bound in S.

e $’=1{(0,0),(0,1),(1,0),(1,1)} is a lattice with the vector ordering.

@ Similarly, the simplex in R"” (again with the usual vector ordering)

{x €R"| ¥;xi =1, x; >0} is not a lattice, while the box
{xeR"|0<x3 <1}is.

17
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Lattices

Definition

A lattice (S, >) is complete if every nonempty subset of S has a
supremum and an infimum in S.

@ Any compact interval of the real line with the usual order is a
complete lattice, while the open interval (a, b) is a lattice but is not
complete [indeed the supremum of (a, b) does not belong to (a, b)].

18
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Tarski's Fixed Point Theorem

Supermodular Games

@ We state the lattice theoretical fixed point theorem due to Tarski.
e Let (5,>) be a partially ordered set. A function f from S to S is
increasing if for all x,y € S, x > y implies f(x) > f(y).
Theorem (Tarski)

Let (S,>) be a complete lattice and f : S — S an increasing function.

Then, the set of fixed points of f, denoted by E, is nonempty and (E, >)
is a complete lattice.

f(s)

f(s)

19
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Supermodularity of a Function

Definition
Let (X,>) be a lattice. A function f : X — R is supermodular on S if for
allx,y € X

f(x)+f(y) <f(xAy)+f(xVy).

Note that supermodularity is automatically satisfied if X is single
dimensional.

20



Monotonicity of Optimal Solutions

@ From now on, we will assume that X C IR.

e The following analysis and theory extends to the case where X is a
lattice.

@ We first study the monotonicity properties of optimal solutions of
parametric optimization problems. Consider a problem

= f
x(t) arg max (x,t),

where f : X X T — R, X C R, and T is some partially ordered set.

@ We will mostly focus on T C RX with the usual vector order, i.e.,
forsome x,y € T, x > yifandonly if x; > y; forall i =1,..., k.

@ We are interested in conditions under which we can establish that
x(t) is a nondecreasing function of t.



Increasing Differences

@ Key property: Increasing differences.

Definition

Let X C R and T be some partially ordered set. A function f : X x T — R has
increasing differences in (x, t) if for all X' > x and t' > t, we have

FOX ) —f(x, t') > F(X, t) — f(x, t).

@ Intuitively: incremental gain to choosing a higher x (i.e., x rather than x)
is greater when t is higher, i.e., f(x/, t) — f(x, t) is nondecreasing in t.

@ You can check that the property of increasing differences is symmetric : an
equivalent statement is that if t’ > t, then f(x,t') — f(x, t) is
nondecreasing in x.

@ The previous definition gives an abstract characterization. The following
result makes checking increasing differences easy in many cases.

22
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Increasing Differences

Lemma

Let X C R and T C R¥ for some k, a partially ordered set with the usual
vector order. Let f : X X T — IR be a twice continuously differentiable
function. Then, the following statements are equivalent:

@ The function f has increasing differences in (x, t).
@ Forallt' >t and all x € X, we have

of (x, t) S of (x, t)
ox - ox
@ Forallxe X,te T,andalli=1,..., k, we have

2
It
oxot;

23




Example | — Network effects (positive externalities)

A set 7 of users can use one of two products X and Y (e.g., Blu-ray and
HD DVD).

B;(J, k) denotes payoff to i when a subset J of users use k and i € J.
There exists a positive externality if
Bi(J, k) < Bj(J' k),  whenJC J,

i.e., player i better off if more users use the same technology as him.
This leads to a strategic form game with actions S; = {X, Y}
Define the order Y > X, which induces a lattice structure
Givense S, let X(s)={i€Z|ss=X},Y(s)={ieZ|s =Y}
We define the payoff functions as

(650 = { Bvy) Hao ¥
It can be verified that payoff functions satisfy increasing differences.

24
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Example lI- Cournot As a Supermodular Game with
Change of Order

@ Consider Cournot duopoly model. Two firms choose the quantity they
produce g; € [0, ).

o Let P(Q) with Q = g + gj denote the inverse demand (price)
function. Payoff function of each firm is
ui(qi, qj) = qiP(q;i + q;) — cqi.

e Assume P'(Q) + q;P"(Q) < 0 (firm i’s marginal revenue decreasing
in gj).

@ We can now verify that the payoff functions of the transformed game
defined by s; = g1, s» = —@q2 have increasing differences in (s1, s7).

25
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Monotonicity of Optimal Solutions

o Key theorem about monotonicity of optimal solutions:

Theorem (Topkis)

Let X C R be a compact set and T be some partially ordered set.
Assume that the function f : X x T — R is continuous [or upper
semicontinuous| in x for all t € T and has increasing differences in (x, t).
Define x(t) = arg maxyex f(x, t). Then, we have:

@ Forallt € T, x(t) is nonempty and has a greatest and least element,
denoted by x(t) and x(t) respectively.

@ Forallt’ > t, we have x(t') > x(t) and x(t') > x(t).

@ Summary: if f has increasing differences, the set of optimal solutions
x(t) is non-decreasing in the sense that the largest and the smallest
selections are non-decreasing.

26




[CETUM IR RIS Al Supermodular Games
Proof

@ By the assumptions that for all t € T, the function f(-, t) is upper
semicontinuous and X is compact, it follows by the Weierstrass' Theorem
that x(t) is nonempty. For all t € T, x(t) C X, therefore is bounded.

@ Since X C R, to establish that x(t) has a greatest and lowest element, it
suffices to show that x(t) is closed.

o Let {x} be a sequence in x(t). Since X is compact, x¥ has a limit point .
By restricting to a subsequence if necessary, we may assume without loss of
generality that xk converges to X.

@ Since xk € x(t) for all k, we have
F(xK,t) > f(x,t), VxeX.

Taking the limit as k — oo in the preceding relation and using the upper
semicontinuity of f(-, t), we obtain

f(x,t) > limsup f(x¥, 1) > f(x,t), VxeX,

k—o0
thus showing that x belongs to x(t), and proving the closedness claim.

27
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Proof

Let t > t. Let x € x(t) and x’ = x(t').
By the fact that x maximizes f(x, t), we have

f(x,t) — f(min(x,x), t) > 0.
This implies (check the two cases: x > x” and x’ > x) that

f(max(x,x/), t) —f(x',t) >0.
By increasing differences of f, this yields

f(max(x,x'), t') —f(x, t/) > 0.
Thus max(x, x") maximizes f (-, t'), i.e, max(x, x") belongs to x(t’). Since

x" is the greatest element of the set x(t’), we conclude that
max(x, x") < x’, thus x < x'.

Since x is an arbitrary element of x(t), this implies x(t) < x(t'). A similar
argument applies to the smallest maximizers.

28
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Supermodular Games

Definition
The strategic game (Z, (S;), (u;)) is a supermodular game if for all i € L:

e S; is a compact subset of R [or more generally S; is a complete lattice
in R™i|;

@ wu; Is upper semicontinuous in s;, continuous in s_;.

@ u; has increasing differences in (s;,s_;) [or more generally u; is
supermodular in (s;,s_;), which is an extension of the property of
increasing differences to games with multi-dimensional strategy
spaces].

29
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Supermodular Games

@ Applying Topkis' theorem implies that each player's “best response
correspondence is increasing in the actions of other players”.
Corollary

Assume (Z, (S;), (u;)) is a supermodular game. Let

Bj(s_;) = arg max u;(s;,s_;).
s;i€S;

Then:
@ Bj(s_;) has a greatest and least element, denoted by B;(s_;) and B;(s_;).
Q Ifs’; >s_j, then Bi(s' ;) > Bi(s_;) and B;(s" ;) > Bi(s_j).

@ Applying Tarski's fixed point theorem to B establishes the existence of a
pure Nash equilibrium for any supermodular game.

@ We next pursue a different approach which provides more insight into the
structure of Nash equilibria.

30
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Supermodular Games

Theorem (Milgrom and Roberts)

Let (Z,(S;), (u;)) be a supermodular game. Then the set of strategies that
survive iterated strict dominance in pure strategies has greatest and least elements
S and s, coinciding with the greatest and the least pure strategy Nash Equilibria.

Corollary
Supermodular games have the following properties:

@ Pure strategy NE exist.

@ The largest and smallest strategies are compatible with iterated strict
dominance (ISD), rationalizability, correlated equilibrium, and Nash
equilibrium are the same.

© If a supermodular game has a unique NE, it is dominance solvable (and lots
of learning and adjustment rules converge to it, e.g., best-response
dynamics).

il
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Proof

@ We iterate the best response mapping. Let SO = S, and let
0 = (5?, o s?) be the largest element of S.

o Lets! = B;(s%;) and S} = {s; € S? | 5; < st}

@ We show that any s; > sl-l, i.e, any s; ¢ Sil, is strictly dominated by sl-l. For
all s_; € S_;, we have

ui(si s_i) —ui(st soi) < wi(s;s2) — (st s2))
< 0,

where the first inequality follows by the increasing differences of u;(s;,s_;)
in (s;,5_;), and the strict inequality follows by the fact that s; is not a best
response to 59,..

@ Note that sl-1 < sIQ.
@ lterating this argument, we define

Sik = B_i(5571)' Slk = {S,' € Sikil | Si < S"k}'

32
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Proof

@ Assume s¥ < sk=1. Then, by Corollary (Topkis), we have
s = Bi(s)) < Bi(s') = s

@ This shows that the sequence {sik} is a decreasing sequence, which is
bounded from below, and hence it has a limit, which we denote by §;. Only
the strategies s; < §; are undominated. Similarly, we can start with

sO=(sD,...,s?) the smallest element in S and identify s.

@ To complete the proof, we show that 5 and s are NE. By construction, for all
i and s; € 5;, we have

u,-(s;(+1,sf,-) > u,-(s;,sk-).

—1

@ Taking the limit as kK — oo in the preceding relation and using the upper
semicontinuity of u; in s; and continuity of u; in s_;, we obtain

ui(3i,5-7) = uj(s;, 5-),
showing the desired claim.

B8}
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