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Outline

@ Review of Supermodular Games

@ Potential Games

@ Reading:
o Fudenberg and Tirole, Section 12.3.

e Monderer and Shapley, “Potential Games,” Games and Economic
Behavior, vol. 14, pp. 124-143, 1996.



Supermodular Games

@ Supermodular games are those characterized by strategic complementarities

@ Informally, this means that the marginal utility of increasing a player’s
strategy raises with increases in the other players’ strategies.

e Implication = best response of a player is a nondecreasing function of
other players’ strategies

@ Why interesting?

e They arise in many models.

o Existence of a pure strategy equilibrium without requiring the
quasi-concavity of the payoff functions.

e Many solution concepts yield the same predictions.

e The equilibrium set has a smallest and a largest element.

o They have nice sensitivity (or comparative statics) properties and
behave well under a variety of distributed dynamic rules.

@ Much of the theory is due to [Topkis 79, 98], [Milgrom and Roberts 90],
[Milgrom and Shannon 94], and [Vives 90, 01].



Increasing Differences

@ Key property: Increasing differences.

Definition

Let X C R and T be some partially ordered set. A function f : X x T — R has
increasing differences in (x, t) if for all X' > x and t' > t, we have

FOX ) —f(x, t') > F(X, t) — f(x, t).

@ Intuitively: incremental gain to choosing a higher x (i.e., x rather than x)
is greater when t is higher, i.e., f(x/, t) — f(x, t) is nondecreasing in t.

@ You can check that the property of increasing differences is symmetric : an
equivalent statement is that if t’ > t, then f(x, t') — f(x, t) is
nondecreasing in x.

@ The previous definition gives an abstract characterization. The following
result makes checking increasing differences easy in many cases.
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Increasing Differences

Lemma

Let X C R and T C R¥ for some k, a partially ordered set with the usual
vector order. Let f : X X T — IR be a twice continuously differentiable
function. Then, the following statements are equivalent:

@ The function f has increasing differences in (x, t).
@ Forallt' >t and all x € X, we have

of (x, t) S of (x, t)
ox - ox
@ Forallxe X,te T,andalli=1,..., k, we have

2
It
oxot;
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Monotonicity of Optimal Solutions

o Key theorem about monotonicity of optimal solutions:

Theorem (Topkis)

Let X C R be a compact set and T be some partially ordered set.
Assume that the function f : X x T — R is continuous [or upper
semicontinuous| in x for all t € T and has increasing differences in (x, t).
Define x(t) = arg maxyex f(x, t). Then, we have:

@ Forallt € T, x(t) is nonempty and has a greatest and least element,
denoted by x(t) and x(t) respectively.

@ Forallt’ > t, we have x(t') > x(t) and x(t') > x(t).

@ Summary: if f has increasing differences, the set of optimal solutions
x(t) is non-decreasing in the sense that the largest and the smallest
selections are non-decreasing.




Supaiesib; Carmes
Supermodular Games

Definition
The strategic game (Z, (S;), (u;)) is a supermodular game if for all i € L:

e S; is a compact subset of R [or more generally S; is a complete lattice
in R™i|;

@ wu; Is upper semicontinuous in s;, continuous in s_;.

@ u; has increasing differences in (s;,s_;) [or more generally u; is
supermodular in (s;,s_;), which is an extension of the property of
increasing differences to games with multi-dimensional strategy
spaces].




Supaiesib; Carmes
Supermodular Games

@ Applying Topkis' theorem implies that each player's “best response
correspondence is increasing in the actions of other players”.
Corollary

Assume (Z, (S;), (u;)) is a supermodular game. Let

Bj(s_;) = arg max u;(s;,s_;).
s;i€S;

Then:
@ Bj(s_;) has a greatest and least element, denoted by B;(s_;) and B;(s_;).
@ Ifs'; >s_j, then Bi(s' ;) > Bi(s_;) and B;(s" ;) > Bi(s_j).

@ Applying Tarski's fixed point theorem to B establishes the existence of a
pure Nash equilibrium for any supermodular game.

@ We next pursue a different approach which provides more insight into the
structure of Nash equilibria.
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Supermodular Games

Theorem (Milgrom and Roberts)

Let (Z,(S;), (u;)) be a supermodular game. Then the set of strategies that
survive iterated strict dominance in pure strategies has greatest and least elements
S and s, coinciding with the greatest and the least pure strategy Nash Equilibria.

Corollary
Supermodular games have the following properties:

@ Pure strategy NE exist.

@ The largest and smallest strategies are compatible with iterated strict
dominance (ISD), rationalizability, correlated equilibrium, and Nash
equilibrium are the same.

© If a supermodular game has a unique NE, it is dominance solvable (and lots
of learning and adjustment rules converge to it, e.g., best-response
dynamics).
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Proof

@ We iterate the best response mapping. Let SO = S, and let
0 = (5?, o s?) be the largest element of S.

o Lets! = B;(s%;) and S} = {s; € S? | 5; < st}

@ We show that any s; > sl-l, i.e, any s; ¢ Sil, is strictly dominated by sl-l. For
all s_; € S_;, we have

ui(si s_i) —ui(st soi) < wi(s;s2) — (st s2))
< 0,

where the first inequality follows by the increasing differences of u;(s;,s_;)
in (s;,5_;), and the strict inequality follows by the fact that s; is not a best
response to 59,..

@ Note that sl-1 < sIQ.
@ lterating this argument, we define

Sik = B_i(5571)' Slk = {S,' € Sikil | Si < S"k}'
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Proof

@ Assume s¥ < sk=1. Then, by Corollary (Topkis), we have
s = Bi(s)) < Bi(s') = s

@ This shows that the sequence {sik} is a decreasing sequence, which is
bounded from below, and hence it has a limit, which we denote by §;. Only
the strategies s; < §; are undominated. Similarly, we can start with

sO=(sD,...,s?) the smallest element in S and identify s.

@ To complete the proof, we show that 5 and s are NE. By construction, for all
i and s; € 5;, we have

u,-(s;(+1,sf,-) > u,-(s;,sk-).

—1

@ Taking the limit as kK — oo in the preceding relation and using the upper
semicontinuity of u; in s; and continuity of u; in s_;, we obtain

ui(3i,5-7) = uj(s;, 5-),
showing the desired claim.
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Potential Games

@ A strategic form game is a potential game [ordinal potential game,
exact potential game] if there exists a function ® : S — R such that
d (s;,5-;) gives information about u; (s;, s—;) for each i € 7.

@ If so, @ is referred to as the potential function.

@ The potential function has a natural analogy to “energy” in physical
systems. It will be useful both for locating pure strategy Nash
equilibria and also for the analysis of “myopic” dynamics.

12



Game Theory: Lecture 8 Potential Games

Potential Functions and Games

Let G = (Z,(S;), (uj)) be a strategic form game.

Definition
A function ® : S — R is called an ordinal potential function for the game G if for
eachi €7 and alls_; € S_;,

ui(x,s_;) —ui(z,5_;) > 0 iff &(x,s_;) —®(z,5_;) >0, for all x,z € S;.

G is called an ordinal potential game if it admits an ordinal potential.

Definition

A function ® : S — R is called an (exact) potential function for the game G if
foreachi € 7 and all s_; € S_;,

ui(x,s_;) —ui(z,s_;) = ®(x,s_;) —P(z,5_;), forall x,z € §;.

G is called an (exact) potential game if it admits a potential.

13




Game Theory: Lecture 8 Potential Games

Example

@ A potential function assigns a real value for every s € 5.

@ Thus, when we represent the game payoffs with a matrix (in finite
games), we can also represent the potential function as a matrix, each
entry corresponding to the vector of strategies from the payoff matrix.

Example

The matrix P is a potential for the “Prisoner’s dilemma” game described

below:
= (oo o) P=(52)
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Pure Strategy Nash Equilibria in Ordinal Potential Games

Theorem

Every finite ordinal potential game has at least one pure strategy Nash
equilibrium.

@ Proof: The global maximum of an ordinal potential function is a pure
strategy Nash equilibrium. To see this, suppose that s* corresponds
to the global maximum. Then, for any i € Z, we have, by definition,
P(sf,s*;) —P(s,s*;) >0 forall s € S;. But since ® is a potential
function, for all / and all s € §;,

ui(st,s*;) —ui(s,s*;) >0 iff ®(s/,s*;) —D(s,s*;) > 0.

Therefore, uj(sf,s*;) — uj(s,s*;) >0 foralls € S; and for all i € Z.
Hence s* is a pure strategy Nash equilibrium.

@ Note, however, that there may also be other pure strategy Nash
equilibria corresponding to local maxima.
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Examples of Ordinal Potential Games

Example: Cournot competition.

I firms choose quantity g; € (0, c0)

The payoff function for player i given by u;(gi, q—;) = qi(P(Q) — ¢).

We define the function ®(q1,- -+, q) = (H, 1 q,) (P(Q) —¢).
Note that for all / and all g_; > 0,

ui(qi, q-;) — ui(g;, q—;) > 0 iff ®(qgj, 9—;) — P(q;, q—;) >0, V gj, q; > 0.

® is therefore an ordinal potential function for this game.
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Examples of Exact Potential Games

Example: Cournot competition (again).

Suppose now that P(Q) = a — bQ and costs c;(g;) are arbitrary.
We define the function

l l l} l}
D (qr,---.qn) =ay qi—bY G —b Y qa—) cla)
i=1 i=1 i=1

1<i<I<I

It can be shown that for all / and all g_;,
ui(qi, g-i) — ui(q}, 9-i) = ®*(gi, g—i) — ©*(q;, g—), for all g;, g; > 0.

@ @ is an exact potential function for this game.
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Game Theory: Lecture 8 Potential Games

Simple Dynamics in Finite Ordinal Potential Games

Definition

A path in strategy space S is a sequence of strategy vectors (s°,st, - -)
such that every two consecutive strategies differ in one coordinate (i.e.,
exactly in one player’s strategy).

An improvement path is a path (s°, s, ) such that,

u;, (s%) < u;, (sk*1) where sk and sk*1 differ in the if" coordinate. In

other words, the payoff improves for the player who changes his strategy.

@ An improvement path can be thought of as generated dynamically by
“myopic players”, who update their strategies according to 1-sided
better reply dynamic.

18




Game Theory: Lecture 8 Potential Games

Simple Dynamics in Finite Ordinal Potential Games

Proposition
In every finite ordinal potential game, every improvement path is finite. J
Proof: Suppose (s9,s1,---) is an improvement path. Therefore we have,

O(s%) < p(st) < -,

where @ is the ordinal potential. Since the game is finite, i.e., it has a finite
strategy space, the potential function takes on finitely many values and the above
sequence must end in finitely many steps.

@ This implies that in finite ordinal potential games, every “maximal”
improvement path must terminate in an equilibrium point.

@ That is, the simple myopic learning process based on 1-sided better reply
dynamic converges to the equilibrium set.

@ Next week, we will show that other natural simple dynamics also converge to
a pure equilibrium for potential games.
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Game Theory: Lecture 8 Potential Games

Characterization of Finite Exact Potential Games

o For a finite path ¢ = (s9,...,s"), let

N

I(7) =Y u™(s") = u™(s'),

i=1
where m; denotes the player changing its strategy in the ith step of
the path.
o The path ¢ = (s°,...,s"N) is closed if s° = sV. It is a simple closed
path if in addition s’ # s¥ for every 0 </ # k < N — 1.
Theorem

A game G is an exact potential game if and only if for all finite simple

closed paths, vy, 1(7y) = 0. Moreover, it is sufficient to check simple closed
paths of length 4.

Intuition: Let () # 0. If potential existed then it would increase when
the cycle is completed.
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Game Theory: Lecture 8 Potential Games

Infinite Potential Games

Proposition
Let G be a continuous potential game with compact strategy sets. Then
G has at least one pure strategy Nash equilibrium.

Proposition

Let G be a game such that S; C R and the payoff functions u; : S — R
are continuously differentiable. Let ® : S — IR be a function. Then, ® is
a potential for G if and only if ® is continuously differentiable and

dui(s)  oP(s)
aS,' - aS,'

foralli €1 and all s € S.
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Congestion Games

Congestion Model: C = (Z, M, (5;)iez, (¢/)jem) where:

T =1{1,2,---,1} is the set of players.
M ={1,2,---,m} is the set of resources.

S; is the set of resource combinations (e.g., links or common
resources) that player i can take/use. A strategy for player i is s; € S,
corresponding to the subset of resources that this player is using.

c/ (k) is the benefit for the negative of the cost to each user who uses
resource j if k users are using it.

Define congestion game (Z, (S;), (u;)) with utilities

i(si,s-i) E cf

JEsi

where k; is the number of users of resource j under strategy s.
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Game Theory: Lecture 8 Potential Games

Congestion and Potential Games

Theorem (Rosenthal (73))

Every congestion game is a potential game and thus has a pure strategy
Nash equilibrium.

@ Proof: For each j define l_<j as the usage of resource j excluding

player i, i.e., '
k_]’: ZIUES;/],
i'#i
where | [j € sy] is the indicator for the event that j € sy.

@ With this notation, the utility difference of player i/ from two
strategies s; and s/ (when others are using the strategy profile s_;) is

ui(sios—i) — ui(sf,s—i) = Y_ (kK +1) = Y (K +1).

JEsi jEs!
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Proof Continued

@ Now consider the function

ko
d(s) = 1cf(k)] .

JEUjr ez sy [k:

@ We can also write

24



Proof Continued

@ Therefore:

B -0 = L | LW+ LK)

JjelU sy | k=1 j€Es;
il #i
j’ H PR
- Y [ dR|+ Y dK+1)
Jje U sp | k=1 jes
il #i
= Y Jdk+1) =) Jd(k+1)
J€si Jes!
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