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Game Theory: Lecture 11 Learning in Games 

Learning in Games 

Most economic theory relies on equilibrium analysis based on Nash 
equilibrium or its refinements. 

The traditional explanation for when and why equilibrium arises is that it 
results from analysis and introspection by the players in a situation where 
the rules of the game, the rationality of the players, and the payoff functions 
of players are all common knowledge. 

In this lecture, we develop an alternative explanation why equilibrium arises 
as the long-run outcome of a process in which less than fully rational players 
grope for optimality over time. 

One of the earliest learning rules, introduced in Brown (1951), is the 
fictitious play. 

The most compelling interpretation of fictitious play is as a “belief-based” 
learning rule, i.e., players form beliefs about opponent play (from the entire 
history of past play) and behave rationally with respect to these beliefs. 
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Game Theory: Lecture 11 Learning in Games 

Setup 

We focus on a two player strategic form game �I , (Si )i ∈I , (ui )i∈I �.

The players play this game at times t = 1, 2, . . ..

The stage payoff of player i is again given by ui (si , s−i ) (for the pure

strategy profile (si , s−i )).

For t = 1, 2, . . . and i = 1, 2, define the function ηi

t : S N,
−i →
where ηt (s−i ) is the number of times player i has observed the action i 
s−i before time t. Let η0 

i (s−i ) represent a starting point (or fictitious 
past).


For example, consider a two player game, with S2 = {U, D}. If

η0

1(U) = 3 and η0
1(D) = 5, and player 2 plays U, U, D in the first


three periods, then η3
1(U) = 5 and η3

1(D) = 6.
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Game Theory: Lecture 11 Learning in Games 

The Basic Idea


The basic idea of fictitious play is that each player assumes that his 
opponent is using a stationary mixed strategy, and updates his beliefs 
about this stationary mixed strategies at each step. 

Players choose actions in each period (or stage) to maximize that 
period’s expected payoff given their prediction of the distribution of 
opponent’s actions, which they form according to: 

µ t (s−i ) = 
ηi

t (s−
η

i
t 

)
(s̄−i ) 

,i ∑s̄−i ∈S−i i 

i.e., player i forecasts player −i ’s strategy at time t to be the

empirical frequency distribution of past play.
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Game Theory: Lecture 11 Learning in Games 

Fictitious Play Model of Learning 

Given player i ’s belief/forecast about his opponents play, he chooses his 
action at time t to maximize his payoff, i.e., 

s t ∈ arg max ui (si , µ t ).i i 
si ∈Si 

Remarks: 

Even though fictitious play is“belief based,” it is also myopic, because 
players are trying to maximize current payoff without considering their future 
payoffs. Perhaps more importantly, they are also not learning the “true 
model” generating the empirical frequencies (that is, how their opponent is 
actually playing the game). 

In this model, every player plays a pure best response to opponents’ 
empirical distributions. 

Not a unique rule due to multiple best responses. Traditional analysis 
assumes player chooses any of the pure best responses. 
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Example 

Consider the fictitious play of the following game: 

L R 
U (3, 3) (0, 0) 
D (4, 0) (1, 1) 

Note that this game is dominant solvable (D is a strictly dominant strategy 
for the row player), and the unique NE (D, R). 

0
1

0
2= (3, 0) and η = (1, 2.5).Assume that η Then fictitious play proceeds as 

follows: 
0
1

0
2= (1, 0) and µ = (1/3.5, 2.5/3.5), so play Period 1: Then, µ

0
1 

0
2follows s = D and s = L. 
1
1

1
2 = (1, 3.5), so play follows = (4, 0) and ηPeriod 2: We have η

s = D and s1
1 

1
2 = R. 

1
1 = (4, 1) and η1

2 = (1, 4.5), so play follows Period 3: We have η
2
2 = R.s = D and s2

1 
Periods 4:... 



Game Theory: Lecture 11 Learning in Games 

Example (continued) 

Since D is a dominant strategy for the row player, he always plays D, and 
µ2 

t converges to (0, 1) with probability 1. 

Therefore, player 2 will end up playing R. 

The remarkable feature of the fictitious play is that players don’t have to 
know anything about their opponent’s payoff. They only form beliefs about 
how their opponents will play. 
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Game Theory: Lecture 11 Learning in Games 

Convergence of Fictitious Play to Pure Strategies 

Let {st } be a sequence of strategy profiles generated by fictitious play (FP). 
Let us now study the asymptotic behavior of the sequence {st }, i.e., the 
convergence properties of the sequence {st } as t ∞.→ 

We first define the notion of convergence to pure strategies. 

Definition 

The sequence {st } converges to s if there exists T such that st = s for all t ≥ T. 

The next proposition formalizes the property that if the FP sequence 
converges, then it must converge to a Nash equilibrium of the game. 

Theorem 

Let {st } be a sequence of strategy profiles generated by fictitious play. 

If {st } converges to ¯ s is a pure strategy Nash equilibrium. s, then ¯

Suppose that for some t, st = s∗, where s∗ is a strict Nash equilibrium. 
Then sτ = s∗ for all τ > t. 
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Game Theory: Lecture 11 Learning in Games 

Proof 

Part 1 is straightforward. Consider the proof of part 2. 

Let st = s∗. We will show that st+1 = s∗. Note that 

µ ti 
+1 = (1 − α)µ ti + αs−

t
i = (1 − α)µ ti + αs−

∗ 
i , 

where, abusing the notation, we used s−
t
i to denote the degenerate 

probability distribution and 

1 
α = . 

∑s ηi
t (s−i ) + 1 −i 

Therefore, by the linearity of the expected utility, we have for all si ∈ Si , 

ui (si , µ t+1) = (1 − α)ui (si , µ t ) + αui (si , s−
∗ 
i ).i i 

Since si 
∗ maximizes both terms (in view of the fact that s∗ is a strict Nash 

equilibrium), it follows that si 
∗ will be played at t + 1. 
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Game Theory: Lecture 11 Learning in Games 

Convergence of Fictitious Play to Mixed Strategies 

The preceding notion of convergence only applies to pure strategies. We 
next provide an alternative notion of convergence, i.e., convergence of 
empirical distributions or beliefs. 

Definition 

The sequence {st } converges to σ ∈ Σ in the time-average sense if for all i and 
for all si ∈ Si , we have 

∑T −1 

lim t=0 I{sit = si } 
= σ(si ), 

T ∞ T→

where I( ) denotes the indicator function, i.e., µT (si ) converges to σi (si ) as· −i 
T ∞.→ 

The next example illustrates convergence of the fictitious play sequence in 
the time-average sense. 
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Game Theory: Lecture 11 Learning in Games 

Convergence in Matching Pennies: An Example 

Player 1 \ Player 2 heads tails 
heads (1, −1) (−1, 1) 
tails (−1, 1) (1, −1) 

Time η1 
t η2 

t Play 
0 (0, 0) (0, 2) (H, H) 
1 (1, 0) (1, 2) (H, H) 
2 (2, 0) (2, 2) (H, T ) 
3 (2, 1) (3, 2) (H, T ) 
4 (2, 2) (4, 2) (T , T ) 
5 (2, 3) (4, 3) (T , T ) 
6 ... ... (T , H) 

In this example, play continues as a deterministic cycle. The time 
average converges to the unique Nash equilibrium,

(1/2, 1/2), (1/2, 1/2) . 
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Game Theory: Lecture 11 Learning in Games 

More General Convergence Result 

Theorem 

Suppose a fictitious play sequence {st } converges to σ in the time-average sense. 
Then σ is a Nash equilibrium. 

Proof: 

Suppose st converges to σ in the time-average sense. 

Suppose, to obtain a contradiction, that σ is not a Nash equilibrium. 

Then there exist some i , si , s � ∈ Si with σi (si ) > 0 such that i 

ui (si
�, σ−i ) > ui (si , σ−i ). 
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Game Theory: Lecture 11 Learning in Games 

Proof (continued) 

Choose ε > 0 such that 

1 
ε < ui (si

�, σ−i ) − ui (si , σ−i )2 
, 

and T sufficiently large that for all t ≥ T , we have 

µ T 
i (s−i ) − σ−i (s−i ) 

ε 
< for all s

maxs∈S ui (s) 
−i , 

which is possible since µi
t σ by assumption. → −i 
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Game Theory: Lecture 11 Learning in Games 

Proof (continued) 

Then, for any t ≥ T , we have 

ui (si , µi
t ) =	 ∑ ui (si , s−i )µi

t (s−i ) 
s−i 

≤	 ∑ ui (si , s−i )σ−i (s−i ) + ε 
s−i 

<	 ∑ ui (si
�, s−i )σ−i (s−i ) − ε 

s−i 

≤	 ∑ ui (si
�, s−i )µi

t (s−i ) = ui (si
�, µi

t ). 
s−i 

This shows that after sufficiently large t, si is never played, implying that as 
t ∞, µt (si ) 0. But this contradicts the fact that σi (si ) > 0,→ −i →
completing the proof. 
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Game Theory: Lecture 11 Learning in Games 

Convergence 

Theorem 

Fictitious play converges in the time-average sense for the game G under 
any of the following conditions: 

G is a two player zero-sum game. 

G is a two player nonzero-sum game where each player has at most 
two strategies. 

G is solvable by iterated strict dominance. 

G is an identical interest game, i.e., all players have the same payoff 
function. 

G is a potential game. 

Below, we will prove convergence for zero-sum games and identical 
interest games using continuous-time fictitious play. 
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Game Theory: Lecture 11 Learning in Games 

Miscoordination


However, convergence in the time-average sense is not necessarily a 
natural convergence notion, as illustrated in the following example. 

Consider the fictitious play of the following game: 

Player 1 \ Player 2 A B 
A (1, 1) (0, 0) 
B (0, 0) (1, 1) 

Note that this game has a unique mixed Nash equilibrium

(1/2, 1/2), (1/2, 1/2) . 

17 



� � 

Game Theory: Lecture 11 Learning in Games 

Miscoordination (continued) 

Consider the following sequence of play: 

Time η1 
t η2 

t Play 
0 (1/2, 0) (0, 1/2) (A, B) 
1 (1/2, 1) (1, 1/2) (B, A) 
2 (3/2, 1) (1, 3/2) (A, B) 
3 ... ... (B, A) 
4 ... ... (A, B) 

Play continues as (A,B), (B,A), . . ., which is again a deterministic 

cycle. The time average converges to (1/2, 1/2), (1/2, 1/2) , 

which is a mixed strategy equilibrium of the game. But players never 
successfully coordinate and receive zero payoffs throughout! 
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Game Theory: Lecture 11 Learning in Games 

Non-convergence 

Convergence of fictitious play can not be guaranteed in general. 

Shapley showed that in a modified rock-scissors-paper game, fictitious play 
does not converge: R S P 

R 
S 
P 

0, 0 1, 0 0, 1 
0, 1 0, 0 1, 0 
1, 0 0, 1 0, 0 

This game has a unique Nash equilibrium: each player mixes uniformly. 

Suppose that η0
1 = (1, 0, 0) and that η0

2 = (0, 1, 0). 

Then in period 0, play is (P,R). In period 1, player 1 expects R, and 2 
expects S, so play is (P,R). Play then continues to follow (P,R) until player 2 
switches to S (suppose this lasts for k periods). 

Play then follows (P,S), until player 1 switches to R (for βk periods, β > 1). 

Play then follows (R,S), until player 2 switches to P (for β2k periods). 

Shapley showed that play cycles among 6 (off-diagonal) profiles with periods 
of ever-increasing length, thus non-convergence. 
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Game Theory: Lecture 11 Continuous-Time Fictitious Play 

Continuous-Time Fictitious Play 

As with the replicator dynamics, continues-time version of fictitious 
play is more tractable. 

Denote the empirical distribution of player i ’s play up to (but not 
including) time t when time intervals are of length Δt by 

t τ=0 ipi (si ) = 
∑(t−Δt)/Δt I{sτ = si } 

. 
t/Δt 

We use pt ∈ Σ to denote the product distribution formed by the pi
t . 

We can now think of making time intervals Δt smaller as we did in 
replicator dynamics (also rescaling time), which will lead us to a 
version a fictitious play in continuous time. We next study this 
continuous-time fictitious play model. 
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Game Theory: Lecture 11 Continuous-Time Fictitious Play 

Continuous-Time Fictitious Play (continued) 

In continuous time fictitious play (CTFP), the empirical distributions of the 
players are updated in the direction of a best response to their opponents’ 
past action: 

dpt 
i ∈ BRi (p t ) − pi

t ,
dt −i 

BRi (p t ) = arg max ui (σi , p t ).−i 
σi ∈Σi 

−i 

Another variant of the CTFP is the perturbed CTFP defined by 

dpi
t 

t t 
dt 

= Ci (p−i ) − pi , 

Ci (p t ) = arg max ui (σi , p t ) − Vi (σi ) ,−i 
σi ∈Σi 

−i 

and Vi : Σi → R is a strictly convex function and satisfies a “boundary 
condition”. 

Since Ci is uniquely defined, the perturbed CTFP is described by a 
differential equation rather than a differential inclusion. 
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Game Theory: Lecture 11 Continuous-Time Fictitious Play 

Convergence of (perturbed) CTFP for Zero-Sum Games 

We consider a two player zero-sum game with payoff matrix M, where the 
perturbed payoff functions are given by 

Π1(σ1, σ2) = σ�1Mσ2 − V1(σ1), 

Π2(σ1, σ2) = −σ1
� Mσ2 − V2(σ2). 

Let {pt } be generated by the perturbed CTFP, 

dpi
t 

t t 
dt 

= Ci (p−i ) − pi , 

t twhere Ci (p−i ) = arg maxσi ∈Σi Πi (σi , p−i ).


We use a Lyapunov function argument to prove convergence.
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Proof 

We consider the function 

W (t) = U1(p t ) + U2(p t ),


where the functions Ui : Σ R are defined as
→ 

Ui (σi , σ−i ) = max Πi (σi
� , σ−i ) − Πi (σi , σ−i ), 

σi
�∈Σi 

The function Ui gives the maximum possible payoff improvement player i 
can achieve by a unilateral deviation in his own mixed strategy. 

Ui (σ) ≥ 0 for all σ ∈ Σ, and Ui (σ) = 0 for all i implies that σ is a mixed 
Nash equilibrium. 
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Proof (Continued) 

For the zero sum game, the function W (t) takes the form 

1, σ
tt t 

1
t 
2W (t) = max Π1(σ ) + max Π2(p ) + V1(p ) + V2(p ).1

� , p 2
�

2
σ�1∈Σ1 σ�2∈Σ2 

dW (t) 
dt = Ci (p ), t

i 
t 
−iWe will show that ≤ 0 with equality if and only if p

0, we have showing that for all initial conditions p

p ti − Ci (p t −i )
lim = 0 i = 1, 2. 
∞→t

We need the following lemma. 
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Game Theory: Lecture 11 Continuous-Time Fictitious Play 

Proof (Continued) 

Lemma 

(Envelope Theorem) Let F : Rn × Rm → R be a continuously differentiable 
function. Let U ⊂ Rm be an open convex subset, and u∗(x) be a continuously 
differentiable function such that 

F (x , u∗(x)) = min F (x , u). 
u∈U 

Let H(x) = minu∈U F (x , u). Then, 

�x H(x) = �x F (x , u∗(x)). 

Proof: The gradient of H(x) is given by 

�x H(x) = �x F (x , u∗(x)) + �uF (x , u∗(x))�x u
∗(x) 

= �x F (x , u∗(x)), 

where we use the fact that �uF (x , u∗(x)) = 0 since u∗(x) minimizes F (x , u). 
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Game Theory: Lecture 11 Continuous-Time Fictitious Play 

Proof (Continued) 

Using the preceding lemma, we have 

tdp2 
dt 

d 
Π1(σ1

� , p t 2) = �σ2 Π1(C1(p t 2
t), p2)
max 

dt σ1
� ∈Σ1 

tdp2 
2)
t 

2

C1(p �M=

dt 

t t 
1

t 
2).C1(p )�M (C2(p ) − p=


Similarly, 

1, σ
td 

max Π2(p t 
2

t t 
1) = −(C1(p ) − p 

t 
1)

)�MC2(p ).2
�

1dt σ2
� ∈Σ2 

tt 

Combining the preceding two relations, we obtain 

2) 1) 1)+ �V1(p tdW (t) 
dt 

= −C1(p Mpt +(p2 MC2(p 
tdp1 

dt 
+ �V2(p t 2)

� 
tdp2 . 

dt 
(1) 
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Game Theory: Lecture 11 Continuous-Time Fictitious Play 

Proof (Continued) 

tSince Ci (p ) is a perturbed best response, we have 

2 − V1(C1(p 

1) 1) − V2(C2(p1)) ≥ −(p1)

t 

tt 

t

tt 

−i 

t t t tC1(p )
 )) ≥ (p )
 2 − V1(p
�Mp2 − V2(p t 

),Mp Mp2 2 1 1

t 
2), 

, i = 1, 2 (the latter claim follows 

−(p MC2(p 

with equality if and only if Ci (p ) = p

1)
t 

t t
i−i 

by the uniqueness of the perturbed best response). 

Combining these relations, we have 

2) 2 + (p1)
ttt ∑ 

i 

t
i

t 
−i−C1(p MC2(p [Vi (p ) − Vi (Ci (p ))]
Mp ≤


∑ 
i

t
i

t
i

t
i )
�Vi (p )�(Ci (p ) − p≤


∑ 
i

= − ,
dt 

t
it

i�Vi (p 
dp

where the second inequality follows by the convexity of Vi . The preceding 
relation and Eq. (1) imply that dW 

dt ≤ 0 for all t, with equality if and only if 
for both players, completing the proof. Ci (pt 

−i ) = pt
i
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Convergence of CTFP for Identical Interest Games 

Consider an I -player game with identical interests, i.e., a game where

all players share the same payoff function Π.

Recall the continuous time fictitious play (CTFP) dynamics:


dp

dt 

t
i ) − p 

t 

t
i

} denote the sequence generated by the CTFP dynamics and 
∈ BRi (pt

i
t
i


t
i


∈ BRi (p t .
−i 

t
iLet {p

tlet σi ).
/dt.
+ dp
 Note that σ
= p
 −i 

Theorem 

For all players i and regardless of the initial condition p0, we have 

lim
 max

→∞ σi

�∈Σi 

Π(σ�i , p t −i ) − Π(p
ti , p
t −i )
 = 0,

t

t
i is asymptotically a best response to p
t −i .p
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Proof


We again consider the function W (t) ≡ ∑i Ui (pt ), where 

Ui (σi , σ−i ) = max Π(σi
� , σ−i ) − Π(σi , σ−i ), 

σ�i ∈Σ 

Observe that 

d d
(Π(p t )) = ∑ ∑ p1

t (s1) pn
t (sn)Π(s)

dt dt 
· · · · · · 

si ∈Si sn ∈Sn � � 

= ∑ ∑ ∑ 
dpi

t 

(si ) ∏ pj
t (sj ) Π(s)· · · 

dti si ∈Si sn∈Sn j �=i 

= ∑ Π 
dpi

t 

, p t . 
dt −i 

i 
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Proof (Continued) 

The preceding explicit derivation essentially follows from the fact that 
Π is linear in its arguments, because these are mixed strategies of 
players. Therefore, the time derivative can be directly applied to the 
arguments. 

Now, observe that 

dpt 

Π 
dt 

i , p t = Π(σt
i i

t , p t ) = Π(σt
i , p t ) − Π(p t ) = Ui (p t ),−i − p −i −i 

where the second equality again follows by the linearity of Φ in mixed 
tstrategies. The last equality uses the fact that σt ∈ BRi (p−i ).i 

Combining this relation with the previous one, we have 

d 
(Π(p t )) = ∑ Ui (p t ) = W (t). 

dt i 
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Proof (Continued) 

Since W (t) is nonnegative everywhere, we conclude Π(pt ) is 
nondecreasing as t increases; thus Π∗ = limt ∞ Π(pt ) exists (since 
Π is bounded above, Π∗ < ∞). 

→

Moreover, we have � Δ 
Π∗ − Π(p t ) ≥ Π(p t+Δ) − Π(p t ) = W (t + τ)dτ ≥ 0. 

0 

the first inequality uses the fact that since Π is nondecreasing; the 
middle inequality follows from the fundamental theorem of calculus, 
and the last inequality simply uses the fact that W (t) is everywhere 
nonnegative. 

Since the left-hand side converges to zero, we conclude that 
W (t) 0 as t ∞.→ → 

0This establishes that for each i and for any initial condition p , 

lim max Π(σ�i , p t ) − Π(pi
t , p t ) = 0. 

t→∞ σi
�∈Σi 

−i −i 
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Remarks 

Notice that what we have here is much stronger than convergence of 
fictitious play in empirical distribution (the results discussed above). 

Instead, we have that for any initial condition p0 , pt converges to a set 
of empirical distributions P∞, where Π(p) = Π∗ for all p ∈ P∞, and 
the mixed strategy of each player is the one that maximizes payoff in 
response to these distributions. 
Implication: the miscoordination illustrated before cannot happen. 

If the function Π has a unique maximizer, this result implies convergence to 
this maximum. 

A potential game is “best response equivalent” to a game of identical 
interest. 

We have “convergence of CTFP to equilibrium behavior” for potential 
games. 
Since many congestion, network traffic and routing, and network 
formation games are potential games, these results imply that for a 
range of network games, Nash equilibrium behavior will emerge even 
without very sophisticated reasoning on the part of the players. 
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