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Extensive Form Games with Perfect Information 

One-stage Deviation Principle 

Applications 

Ultimatum Game 

Rubinstein-Stahl Bargaining Model 

Reading: 

Fudenberg and Tirole, Sections 4.1-4.4. 
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Game Theory: Lecture 13 Extensive Form Games 

Introduction 

We have studied extensive form games which model sequential 
decision making. 

Equilibrium notion for extensive form games: Subgame Perfect 
(Nash) Equilibrium. 

It requires each player’s strategy to be “optimal” not only at the start 
of the game, but also after every history. 
For finite horizon games, found by backward induction. 

Backward induction refers to starting from the “last” subgames of a 
finite game, finding the best response strategy profiles or the Nash 
equilibria in the subgames, then assigning these strategies profiles and 
the associated payoffs to be subgames, and moving successively 
towards the beginning of the game. 

For finite/infinite horizon games, characterization in terms of 
one-stage deviation principle. 
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Game Theory: Lecture 13 One-stage Deviation Principle 

One-stage Deviation Principle 

Focus on multi-stage games with observed actions (or perfect information 
games). 

One-stage deviation principle is essentially the principle of optimality of 
dynamic programming. 

We first state it for finite horizon games. 
Theorem (One-stage deviation principle) 

For finite horizon multi-stage games with observed actions , s∗ is a subgame 
perfect equilibrium if and only if for all i , t and ht , we have 

ui (si 
∗ , s−

∗ 
i |ht ) ≥ ui (si , s−

∗ 
i |ht ) 

for all si satisfying 
si (ht ) �= si 

∗(ht ), 

si |ht (ht+k ) = si 
∗
|ht (ht+k ), for all k > 0, and all ht+k ∈ G (ht ). 

Informally, s is a subgame perfect equilibrium (SPE) if and only if no player i 
can gain by deviating from s in a single stage and conforming to s thereafter. 
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Game Theory: Lecture 13 One-stage Deviation Principle 

One-stage Deviation Principle for Infinite Horizon Games 

The proof of one-stage deviation principle for finite horizon games relies on 
the idea that if a strategy satisfies the one stage deviation principle then 
that strategy cannot be improved upon by a finite number of deviations. 

This leaves open the possibility that a player may gain by an infinite 
sequence of deviations, which we exclude using the following condition. 

Definition 

Consider an extensive form game with an infinite horizon, denoted by G ∞ . Let h 
denote an ∞-horizon history, i.e., h = (a0 , a1 , a2 ...), is an infinite sequence of 
actions. Let ht = (a0 , ...at−1) be the restriction to first t periods. The game G ∞ 

is continuous at infinity if for all players i , the payoff function ui satisfies 

˜ 
sup 

˜ 
|ui (h) − ui (h̃)| → 0 as t → ∞. 

h,h s.t. ht =ht 
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Game Theory: Lecture 13 One-stage Deviation Principle 

One-stage Deviation Principle for Infinite Horizon Games 

The continuity at infinity condition is satisfied when the overall payoffs are a 
discounted sum of stage payoffs, i.e., 

∞ 

ui =	 ∑ δi
t gi

t (a t ), 
t=0 

(where gi
t (at ) are the stage payoffs, the positive scalar δi < 1 is a discount 

factor), and the stage payoff functions are uniformly bounded, i.e., there 
exists some B such that maxt,at gi

t (at ) < B.| |
Theorem 

Consider an infinite-horizon game, G ∞, that is continuous at infinity. Then, the 
one stage deviation principle holds, i.e., the strategy profile s∗ is an SPE if and 
only if for all i , ht , and t, we have 

ui (si 
∗ , s− 

∗ 
i |ht ) ≤ ui (si , s− 

∗ 
i |ht ), 

for all si that satisfies si (ht ) �= si 
∗(ht ) and si |ht (ht+k ) = si 

∗|ht (ht+k ) for all 
ht+k ∈ G (ht ) and for all k > 0. 
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Game Theory: Lecture 13 Applications 

Examples: Value of Commitment 

Consider the entry deterrence game, but with a different timing as 
shown in the next figure. 

Entrant

Incumbent

In Out

A F

(2,1) (1,2) (0,0)

In Out

(1,2)

Note: For consistency, first number is still the entrant’s payoff. 
This implies that the incumbent can now commit to fighting (how 
could it do that?). 
It is straightforward to see that the unique SPE now involves the
 
incumbent committing to fighting and the entrant not entering.
 
This illustrates the value of commitment. 
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Game Theory: Lecture 13 Applications 

Examples: Stackleberg Model of Competition 

Consider a variant of the Cournot model where player 1 chooses its quantity 
q1 first, and player 2 chooses its quantity q2 after observing q1. Here, player 
1 is the Stackleberg leader. 

Suppose again that both firms have marginal cost c and the inverse demand 
function is given by P (Q) = α − βQ, where Q = q1 + q2, where α > c . 

This is a dynamic game, so we should look for SPE. How to do this? 

Backward induction—this is not a finite game, but all we have seen so far 
applies to infinite games as well. 

Look at a subgame indexed by player 1 quantity choice, q1. Then player 2’s 
maximization problem is essentially the same as before 

max π2 (q1, q2) = [P (Q) − c ] q2 
q2≥0 

= [α − β (q1 + q2) − c ] q2. 
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Game Theory: Lecture 13 Applications 

Stackleberg Competition (continued) 

This gives best response 

α − c − βq1 q2 = . 
2β 

Now the difference is that player 1 will choose q1 recognizing that player 2 
will respond with the above best response function. 

Player 1 is the Stackleberg leader and player 2 is the follower. 

This means player 1’s problem is 

maximizeq1≥0 π1 (q1, q2) = [P (Q) − c ] q1 

subject to q2 = 
α − c − βq1 . 

2β 

Or � � � �


max α − β q1 + 
α − c − βq1 − c q1.


q1≥0 2β 
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Game Theory: Lecture 13 Applications 

Stackleberg Competition (continued) 

The first-order condition is 

α − β q1 + 
α − c − βq1 − c 

β 
q1 = 0,

2β 
− 

2 

which gives 
S α − c 

q1 = . 
2β 

And thus 
S α − c S q2 = < q14β 

Why lower output for the follower? 

Total output is 

QS = q1 
S + q2 

S =
 
3 (α − c) 

,
4β


which is greater than Cournot output. Why?
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Game Theory: Lecture 13 Applications 

Multiplicity of Subgame Perfect Equilibria 

Question: What happens if in some subgame more than one action is
 
optimal? Consider all optimal actions and trace back implications of
 
each in all of the longer subgames.
 
To illustrate this, consider the following game.
 

Player 1

Player 2

C D E

F G H I J K

(1,0)(3,0) (1,1) (2,1) (2,2) (1,3)

Player 2’s optimal strategies in this game are given by: 

FHK FIK
 
GHK GIK
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Game Theory: Lecture 13 Applications 

Multiplicity of Subgame Perfect Equilibria 

Now consider player 1’s optimal strategies for every combination of 
optimal actions for player 2: 

6 SPE’s 
2’s opt. strt. 1’s BR (C, FHK) 
FHK C (C, FIK) →
FIK C (C, GHK) →
GHK C,D,E (D, GHK) →
GIK D (E, GHK) → 

(D, GIK) 

12 



Game Theory: Lecture 13 Applications 

Bargaining Problems 

We next study bargaining problems, which can be naturally modeled 
as an extensive game. 

We start by studying the ultimatum game, which is a simple game 
that is the basis of a richer model. 
Two people use the following procedure to split c dollars:
 

1 offers 2 some amount x ≤ c
 
if 2 accepts the outcome is: (c − x , x)
 
if 2 rejects the outcome is: (0, 0)
 
Note: each person cares about the amount of money he receives and 
we assume that x can be any scalar, not necessarily integral. 

Question: What is an SPE for this game? 

Let us use an extensive game model for the negotiation process: 
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Game Theory: Lecture 13 Applications 

SPE of the Ultimatum Game
 

It is a finite horizon game, so we can use backward induction to find the 

Player 1

Player 2

x

Y N

(c-x,x) (0,0)

SPE of this game. 

There is a different possible subgame for each value of x , so we need to find 
the optimal action of player 2 for each such subgame: 

if x > 0 Yes → 
x = 0 indifferent between Yes and No → 

How many different optimal strategies does player 2 have? 

(1) Yes for all x ≥ 0 
(2) Yes if x > 0 and No if x = 0 
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Game Theory: Lecture 13 Applications 

SPE of the Ultimatum Game
 

Trace back the implications of each of player 2’s optimal strategies, i.e., 
consider player 1’s optimal strategy for each of these strategies: 

For (1): player 1’s optimal offer is x = 0 
For (2): player 1’s optimal offer is:
 
x = 0 0
→ 
x > 0 max no optimal solution → c − x 

x>0 
(c − x) ⇒ 

⇒ no offer of player 1 is optimal! 
Unique SPE: 

1 offers 0 
person 2 accepts all offers 
Outcome: (0, y ) 1 gets all the pie ⇒ 

Remarks: 
One-sided outcome one-sided structure of the game should allow 2 to →
make a counter offer after rejection then it is more like bargaining 

This SPE is not supported by experimental evidence (cultural effect come 
into play and behavior exhibits some sort of concern for fair outcomes or 
reciprocity). 

15 



1

2

Game Theory: Lecture 13 Applications 

SPE of the Ultimatum Game 

Exercises: 

What if the amount of money available is in multiples of a cent? Then there 
are 2 SPE’s instead of 1: 

Player 1 offers 0, and player 2 says Yes to all offers 
Player 1 offers 1 cent, and player 2 says Yes to all offers except 0 

Show that for every x̄ ∈ [0, c ], there exists a NE in which 1 offers x̄ . Find 
2’s optimal strategy. 
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Game Theory: Lecture 13 Applications 

Bargaining as an Extensive Game 

In the ultimatum game, player 2 is powerless. His only alternative to 
accepting is to reject which results in him getting no pie. 

Let us extend the model to give player 2 more power: 

We assume that c = 1. Moreover, let x = (x1, x2) with x1 + x2 = 1 denote 
the allocation in the first part and y = (y1, y2) with y1 + y2 = 1 denote the 
allocation in the second part. 

Player 1

Player 2

x

Y N

(x1,x2)
Player 2

Player 1

y

Y N

(y1,y2) (0,0)
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Game Theory: Lecture 13 Applications 

Bargaining as an Extensive Game 

The second part of the game is an ultimatum game in which 2 moves first. 
This has a unique subgame perfect equilibrium given by: 

2 offers nothing to 1 
1 accepts all offers 

We note that in every SPE, 2 obtains all the pie 

Last Mover’s Advantage: Similar result with alternating offers. In every 
SPE, the player who makes the offer in the last period obtains all the pie. 

In our model so far, players indifferent about timing of an agreement. In real 
life however, bargaining takes time and time is valuable. Players preferences 
should reflect the fact that they have bias towards earlier agreements. 
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Game Theory: Lecture 13 Applications 

Finite Horizon Game with Alternating Offers 

Players alternate proposals, future discounted using the constant discount 
factor 0 < δi < 1 at each period. 

Two Periods: 
Player 1

Player 2

x

Y N

(x1,x2)
Player 2

Player 1

y

Y N

(δ1y1, δ2y2) (0,0)

(1)

(2)

(3)

We find the SPE by backward induction: 
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Game Theory: Lecture 13 Applications 

Finite Horizon Game with Alternating Offers 

In (1) (the last “ultimatum game”), the unique SPE: player 2 offers (0, 1) 
player 1 accepts all proposals. The outcome is (0, δ2). 

In (2): 
Y if x2 ≥ δ2 
N if x2 < δ2N → (0, δ2) 2 strategies 

Y (x1, x2) Y if x2 > δ2
→ 

N if x2 ≤ δ2 

In (3): Players 1’s optimal strategy is (1 − δ2, δ2) 

Hence, the unique SPE of this game is: 

Player 1’s initial proposal (1 − δ2, δ2). 

Player 2 accepts all proposals where x2 ≥ δ2 and rejects all x2 < δ2. 

Player 2 proposes (0, 1) after any history in which he rejects a proposal of 
player 1. 

Player 1 accepts all proposals of player 2 (after a history in which 2 rejects 
1’s opening proposal). 
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Game Theory: Lecture 13 Applications 

Finite Horizon Game with Alternating Offers 

The outcome of the game is: 

Player 1 proposes (1 − δ2, δ2). 

Player 2 accepts. 

Resulting payoff : (1 − δ2, δ2).
 

Desirability of an earlier agreement yields a positive payoff for player 1.
 

For 3 periods, similar analysis using backward induction. 

Iterating, we get Stahl’s Bargaining Model. 
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Game Theory: Lecture 13 Applications 

Stahl’s Bargaining Model: Finite Horizon 

# Periods player 1 gets 

2 periods 1 − δ2 
3 periods 1 − δ2 + δ1δ2 
5 periods 1 − δ2 + δ1δ2(1 − δ2) + δ1δ2 

2k periods 1 − δ2 
1
1
−(

( 
δ
δ 
1δ

δ 
2)

) 
k 

1 2− 

2k + 1 periods 1 − δ2 
1
1
−(

( 
δ
δ 
1δ

δ 
2)

) 
k 

+ (δ1δ2)k 
1 2− 

Taking the limit as k ∞, we see that player 1 gets x1 
∗ = 1−δ2 at the SPE. → 1−δ1δ2 
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Game Theory: Lecture 13 Applications 

Rubinstein’s Infinite Horizon Bargaining Model 

Instead of two players alternating offers for a period of time, there is no 
deadline, they can alternate offers forever. 

There are two types of terminal histories: 

(x1 , N, x2 , N.....x t , N...) every offer rejected 
(x1 , N, x2 , N.....x t , Y ) 

→ 

This game does not have a finite horizon, so we cannot use backward 
induction to find the SPE. 

We will instead guess a strategy profile and verify that it forms an SPE using 
the one-stage deviation principle. 

The strategy of a player in this game involves:
 

Offer in period 1
 
Response to history (x1 , N, x2)
 
counteroffer for history (x1 , N, x2 , N)
 

Each player faces the same subgame in all periods: The absolute payoffs are 
different but the preferences are the same, because all options are 
discounted by the same factor. 
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Game Theory: Lecture 13 Applications 

Rubinstein’s Infinite Horizon Bargaining Model 

Therefore, we focus on stationary policies in which each player always make 
the same proposal and always accepts the same set of proposals. 

We define 

x1 
∗ = 

1 − δ2 , x2 
∗ = 

δ2(1 − δ1) ,
1 − δ1δ2 1 − δ1δ2 

y1 
∗ = 

1 − δ1 , y2 
∗ = 

δ1(1 − δ2) . 
1 − δ1δ2 1 − δ1δ2 

We consider the following strategy profile (s1 
∗, s2 

∗): 

player 1 proposes x∗ and accepts y if and only if y1 ≥ y1 
∗. 

player 2 proposes y∗ and accepts x if and only if x2 ≥ x2 
∗. 

We verify that this strategy profile is an SPE using one-stage deviation 
principle. 
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Rubinstein’s Infinite Horizon Bargaining Model 

First note that this game has 2 types of subgames: 

One in which first move is an offer: 
One in which first move is a response to an offer: 

For the first type of subgame: Suppose offer made by player 1
 

Fix 2’s strategy at s2 
∗
 

if player 1 adopts s1 
∗ ⇒ 2 accepts, player 1 gets x1 

∗
 

if 1 offers > x2 
∗, 2 accepts leading to a lower payoff than x1 

∗ for player 1.
 
if 1 offers < x2 

∗, 2 rejects, offers y ∗, player 1 accepts, leading to a 
payoff of δ1y1 

∗. Since δ1y1 
∗ < x1 

∗, player 1 is better off using s1 
∗. 

For the second type of subgame: Suppose player 1 is responding 

Fix 2’s strategy at s2 
∗
 

Denote by (y1, y2) the offer to which player 1 is responding
 
if player 1 adopts s1 

∗, he accepts the offer iff y1 > y1 
∗
 

if player 1 rejects some offer y1 ≥ y ∗, player 1 will get δ1x
∗ = y ∗, thus
1 1 1 

he cannot increase his payoff by deviating. 

Hence s∗ is an SPE (in fact the unique SPE, check FT, Section 4.4.2 to verify). 
25 

1

2



MIT OpenCourseWare
http://ocw.mit.edu 

6.254 Game Theory with Engineering Applications 
Spring 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Game Theory: Lecture 13
	Introduction
	Extensive Form Games
	One-stage Deviation Principle
	Applications


