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Game Theory: Lecture 17 Introduction 

Outline


Incomplete information. 

Bayes rule and Bayesian inference. 

Bayesian Nash Equilibria. 

Auctions. 

Reading: 

Fudenberg and Tirole, Sections 6.1-6.5. 

Krishna, Chapters 1-5. 
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Game Theory: Lecture 17 Incomplete Information 

Incomplete Information 

In many game theoretic situations, one agent is unsure about the 
payoffs or preferences of others. 

Incomplete information introduces additional strategic interactions 
and also raises questions related to “learning”. 

Examples: 

Bargaining (how much the other party is willing to pay is generally 
unknown to you) 
Auctions (how much should you bid for an object that you want, 
knowing that others will also compete against you?) 
Market competition (firms generally do not know the exact cost of 
their competitors) 
Signaling games (how should you infer the information of others from 
the signals they send) 
Social learning (how can you leverage the decisions of others in order 
to make better decisions) 

3 



Game Theory: Lecture 17 Incomplete Information 

Example: Incomplete Information Battle of the Sexes


Recall the battle of the sexes game, which was a complete

information “coordination” game.

Both parties want to meet, but they have different preferences on 
“Ballet” and “Football”. 

B F 
B (2, 1) (0, 0) 
F (0, 0) (1, 2) 

In this game there are two pure strategy equilibria (one of them 
better for player 1 and the other one better for player 2), and a mixed 
strategy equilibrium. 
Now imagine that player 1 does not know whether player 2 wishes to 
meet or wishes to avoid player 1. Therefore, this is a situation of 
incomplete information—also sometimes called asymmetric 
information. 
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Game Theory: Lecture 17 Incomplete Information 

Example (continued) 

We represent this by thinking of player 2 having two different types, 
one type that wishes to meet player 1 and the other wishes to avoid 
him. 

More explicitly, suppose that these two types have probability 1/2 
each. Then the game takes the form one of the following two with 
probability 1/2. 

B F 
B (2, 1) (0, 0) 
F (0, 0) (1, 2) 

B F 
B (2, 0) (0, 2) 
F (0, 1) (1, 0) 

Crucially, player 2 knows which game it is (she knows the state of 
the world), but player 1 does not. 

What are strategies in this game? 
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Game Theory: Lecture 17 Incomplete Information 

Example (continued) 

Most importantly, from player 1’s point of view, player 2 has two 
possible types (or equivalently, the world has two possible states each 
with 1/2 probability and only player 2 knows the actual state). 

How do we reason about equilibria here? 

Idea: Use Nash Equilibrium concept in an expanded game, where 
each different type of player 2 has a different strategy 

Or equivalently, form conjectures about other player’s actions in each 
state and act optimally given these conjectures. 
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Game Theory: Lecture 17 Incomplete Information 

Example (continued) 

Let us consider the following strategy profile (B, (B, F )), which 
means that player 1 will play B, and while in state 1, player 2 will also 
play B (when she wants to meet player 1) and in state 2, player 2 will 
play F (when she wants to avoid player 1). 
Clearly, given the play of B by player 1, the strategy of player 2 is a 
best response. 
Let us now check that player 1 is also playing a best response. 
Since both states are equally likely, the expected payoff of player 1 is 

1 1 
E[B, (B, F )] = 

2 
× 2 + 

2 
× 0 = 1. 

If, instead, he deviates and plays F , his expected payoff is 

1 1 1 
E[F , (B, F )] = 

2 
× 0 + 

2 
× 1 = 

2
. 

Therefore, the strategy profile (B, (B, F )) is a (Bayesian) Nash 
equilibrium. 
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Game Theory: Lecture 17 Incomplete Information 

Example (continued) 

Interestingly, meeting at Football, which is the preferable outcome for 
player 2 is no longer a Nash equilibrium. Why not? 

Suppose that the two players will meet at Football when they want to 
meet. Then the relevant strategy profile is (F , (F , B)) and 

1 1 1 
E[F , (F , B)] = 

2 
× 1 + 

2 
× 0 = . 

2 

If, instead, player 1 deviates and plays B, his expected payoff is 

1 1 
E[B, (F , B)] = 

2 
× 0 + 

2 
× 2 = 1. 

Therefore, the strategy profile (F , (F , B)) is not a (Bayesian) Nash 
equilibrium. 
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Game Theory: Lecture 17 Bayesian Games 

Bayesian Games 

More formally, we can define Bayesian games, or “incomplete 
information games” as follows. 

Definition 

A Bayesian game consists of 

A set of players I ; 

A set of actions (pure strategies) for each player i : Si ; 

A set of types for each player i : θi ∈ Θi ; 

A payoff function for each player i : ui (s1, . . . , sI , θ1, . . . , θI ); 
A (joint) probability distribution p(θ1, . . . , θI ) over types (or 
P(θ1, . . . , θI ) when types are not finite). 

More generally, one could also allow for a signal for each player, so 
that the signal is correlated with the underlying type vector. 

9 



Game Theory: Lecture 17 Bayesian Games 

Bayesian Games (continued) 

Importantly, throughout in Bayesian games, the strategy spaces, the 
payoff functions, possible types, and the prior probability distribution 
are assumed to be common knowledge. 

Very strong assumption. 
But very convenient, because any private information is included in the 
description of the type and others can form beliefs about this type and 
each player understands others’ beliefs about his or her own type, and 
so on, and so on. 

Definition 

A (pure) strategy for player i is a map si : Θi Si prescribing an action →
for each possible type of player i . 
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Game Theory: Lecture 17 Bayesian Games 

Bayesian Games (continued) 

Recall that player types are drawn from some prior probability 
distribution p(θ1, . . . , θI ). 
Given p(θ1, . . . , θI ) we can compute the conditional distribution 
p(θ−i | θi ) using Bayes rule. 

Hence the label “Bayesian games”. 
Equivalently, when types are not finite, we can compute the conditional 
distribution P(θ−i | θi ) given P(θ1, . . . , θI ). 

Player i knows her own type and evaluates her expected payoffs 
according to the conditional distribution p(θ−i | θi ), where 
θ−i = (θ1, . . . , θi−1, θi+1, . . . , θI ). 
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Game Theory: Lecture 17 Bayesian Games 

Bayesian Games (continued) 

Since the payoff functions, possible types, and the prior probability 
distribution are common knowledge, we can compute expected 
payoffs of player i of type θi as 

U si
�, s−i , θi =	 ∑ p(θ−i | θi )ui (si

�, s−i (θ−i ), θi , θ−i ) 
θ−i 

when types are finite 

= ui (si
�, s−i (θ−i ), θi , θ−i )P(dθ−i | θi ) 

when types are not finite. 
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Game Theory: Lecture 17 Bayesian Games 

Bayesian Nash Equilibria 

Definition 

(Bayesian Nash Equilibrium) The strategy profile s( ) is a (pure strategy) ·
Bayesian Nash equilibrium if for all i ∈ I and for all θi ∈ Θi , we have that 

si (θi ) ∈ arg max ∑ p(θ θi )ui (si
�, s−i (θ−i ), θi , θ−i ), 

si
�∈Si −i 

−i |
θ

or in the non-finite case, 

si (θi ) ∈ arg max ui (si
�, s−i (θ−i ), θi , θ−i )P(dθ−i | θi ) . 

si
�∈Si 

Hence a Bayesian Nash equilibrium is a Nash equilibrium of the 
“expanded game” in which each player i ’s space of pure strategies is 
the set of maps from Θi to Si . 
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Game Theory: Lecture 17 Bayesian Games 

Existence of Bayesian Nash Equilibria 

Theorem 

Consider a finite incomplete information (Bayesian) game. Then a mixed 
strategy Bayesian Nash equilibrium exists. 

Theorem 

Consider a Bayesian game with continuous strategy spaces and continuous 
types. If strategy sets and type sets are compact, payoff functions are 
continuous and concave in own strategies, then a pure strategy Bayesian 
Nash equilibrium exists. 

The ideas underlying these theorems and proofs are identical to those 
for the existence of equilibria in (complete information) strategic form 
games. 
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Game Theory: Lecture 17 Bayesian Games 

Example: Incomplete Information Cournot 

Suppose that two firms both produce at constant marginal cost. 
Demand is given by P (Q) as in the usual Cournot game. 
Firm 1 has marginal cost equal to C (and this is common

knowledge).

Firm 2’s marginal cost is private information. It is equal to CL with 
probability θ and to CH with probability (1 − θ), where CL < CH . 

This game has 2 players, 2 states (L and H) and the possible actions 
of each player are qi ∈ [0, ∞), but firm 2 has two possible types. 
The payoff functions of the players, after quantity choices are made, 
are given by 

u1((q1, q2), t) = q1(P(q1 + q2) − C ) 
u2((q1, q2), t) = q2(P(q1 + q2) − Ct ), 

where t ∈ {L, H} is the type of player 2. 
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Game Theory: Lecture 17 Bayesian Games 

Example (continued) 

A strategy profile can be represented as (q1 
∗, qL

∗, qH 
∗ ) [or equivalently 

as (q1 
∗, q2 

∗(θ2))], where qL 
∗ and qH 

∗ denote the actions of player 2 as a 
function of its possible types. 

We now characterize the Bayesian Nash equilibria of this game by 
computing the best response functions (correspondences) and finding 
their intersection. 

There are now three best response functions and they are are given by 

B1(qL, qH ) = arg max 
q1≥0 

{θ(P(q1 + qL) − C )q1 

+ (1 − θ)(P(q1 + qH ) − C )q1}
BL(q1) = arg max 

qL≥0
{(P(q1 + qL) − CL)qL} 

BH (q1) = arg max 
qH ≥0

{(P(q1 + qH ) − CH )qH }. 
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Game Theory: Lecture 17 Bayesian Games 

Example (continued) 

The Bayesian Nash equilibria of this game are vectors (q1 
∗, qL

∗, qH 
∗ ) 

such that 

B1(qL
∗, qH 

∗ ) = q1 
∗, BL(q1 

∗) = qL
∗, BH (q1 

∗) = qH 
∗ . 

To simplify the algebra, let us assume that P(Q) = α − Q, Q ≤ α. 
Then we can compute: 

1

q∗ = (α − 2C + θCL + (1 − θ)CH )1
 3


qL 
∗ =

1 1

(α − 2CL + C ) − (1 − θ)(CH − CL)

3 6


qH 
∗ =

1 1

(α − 2CH + C ) + θ(CH − CL). 

3 6
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Game Theory: Lecture 17 Bayesian Games 

Example (continued) 

Note that qL 
∗ > qH 

∗ . This reflects the fact that with lower marginal 
cost, the firm will produce more. 
However, incomplete information also affects firm 2’s output choice. 
Recall that, given this demand function, if both firms knew each 
other’s marginal cost, then the unique Nash equilibrium involves 
output of firm i given by 

1 
(α − 2Ci + Cj ). 

3 
With incomplete information, firm 2’s output is more if its cost is CH 

and less if its cost is CL. If firm 1 knew firm 2’s cost is high, then it 
would produce more. However, its lack of information about the cost 
of firm 2 leads firm 1 to produce a relatively moderate level of output, 
which then allows firm 2 to be more “aggressive”. 
Hence, in this case, firm 2 benefits from the lack of information of 
firm 1 and it produces more than if 1 knew his actual cost. 
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Game Theory: Lecture 17 Auctions 

Auctions


A major application of Bayesian games is to auctions, which are 
historically and currently common method of allocating scarce goods 
across individuals with different valuations for these goods. 

This corresponds to a situation of incomplete information because the 
valuations of different potential buyers are unknown. 

For example, if we were to announce a mechanism, which involves 
giving a particular good (for example a seat in a sports game) for free 
to the individual with the highest valuation, this would create an 
incentive for all individuals to overstate their valuations. 

In general, auctions are designed by profit-maximizing entities, which 
would like to sell the goods to raise the highest possible revenue. 
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Game Theory: Lecture 17 Auctions 

Auctions (continued) 

Different types of auctions and terminology: 

English auctions: ascending sequential bids. 
First price sealed bid auctions: similar to English auctions, but in the 
form of a strategic form game; all players make a single simultaneous 
bid and the highest one obtains the object and pays its bid. 
Second price sealed bid auctions: similar to first price auctions, except 
that the winner pays the second highest bid. 
Dutch auctions: descending sequential auctions; the auction stops when 
an individual announces that she wants to buy at that price. Otherwise 
the price is reduced sequentially until somebody stops the auction. 
Combinatorial auctions: when more than one item is auctioned, and 
agents value combinations of items. 
Private value auctions: valuation of each agent is independent of 
others’ valuations; 
Common value auctions: the object has a potentially common value, 
and each individual’s signal is imperfectly correlated with this common 
value. 
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Game Theory: Lecture 17 Auctions 

Modeling Auctions 

Model of auction: 

a valuation structure for the bidders (i.e., private values for the case of 
private-value auctions), 
a probability distribution over the valuations available to the bidders. 

Let us focus on first and second price sealed bid auctions, where bids 
are submitted simultaneously. 

Each of these two auction formats defines a static game of incomplete 
information (Bayesian game) among the bidders. 

We determine Bayesian Nash equilibria in these games and compare 
the equilibrium bidding behavior. 
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Game Theory: Lecture 17 Auctions 

Modeling Auctions (continued) 

More explicitly, suppose that there is a single object for sale and N 
potential buyers are bidding for the object. 
Bidder i assigns a value vi to the object, i.e., a utility 

vi − bi , 

when he pays bi for the object. He knows vi . This implies that we 
have a private value auction (vi is his “private information” and 
“private value”). 
Suppose also that each vi is independently and identically distributed 
on the interval [0, v̄ ] with cumulative distribution function F , with 
continuous density f and full support on [0, v̄ ]. 
Bidder i knows the realization of its value vi (or realization vi of the 
random variable Vi , though we will not use this latter notation) and 
that other bidders’ values are independently distributed according to 
F , i.e., all components of the model except the realized values are 
“common knowledge”. 
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Game Theory: Lecture 17 Auctions 

Modeling Auctions (continued) 

Bidders are risk neutral, i.e., they are interested in maximizing their 
expected profits. 

This model defines a Bayesian game of incomplete information, where 
the types of the players (bidders) are their valuations, and a pure 
strategy for a bidder is a map 

βi : [0, v̄ ] → R+. 

We will characterize the symmetric equilibrium strategies in the first 
and second price auctions. 

Once we characterize these equilibria, then we can also investigate 
which auction format yields a higher expected revenue to the seller at 
the symmetric equilibrium. 
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Game Theory: Lecture 17 Auctions 

Second Price Auctions 

Second price auctions will have the structure very similar to a 
complete information auction discussed earlier in the lectures. 
There we saw that each player had a weakly dominant strategy. This 
will be true in the incomplete information version of the game and 
will greatly simplify the analysis. 
In the auction, each bidder submits a sealed bid of bi , and given the 
vector of bids b = (bi , b−i ) and valuation vi of player i , its payoff is 

Ui ((bi , b−i ) , vi ) = 
vi − maxj �=i bj if bi > maxj �=i bj 

0 if bi > maxj bj .�=i 

Let us also assume that if there is a tie, i.e., bi = maxj bj , the �=i 

object goes to each winning bidder with equal probability. 
With the reasoning similar to its counterpart with complete 
information, in a second-price auction, it is a weakly dominant 
strategy to bid truthfully, i.e., according to βII (v ) = v . 
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Game Theory: Lecture 17 Auctions 

Second Price Auctions (continued) 

This can be established with the same graphical argument as the one 
we had for the complete information case. 

The first graph shows the payoff for bidding one’s valuation, the 
second graph the payoff from bidding a lower amount, and the third 
the payoff from bidding higher amount. 

In all cases B∗ denotes the highest bid excluding this player. 

B*v*

ui(bi)

bi = v*

B*v* B*
v*

bi < v* bi > v*

ui(bi) ui(bi)

bi bi
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Game Theory: Lecture 17 Auctions 

Second Price Auctions (continued) 

Moreover, now there are no other optimal strategies and thus the 
(Bayesian) equilibrium will be unique, since the valuation of other 
players are not known. 
Therefore, we have established: 

Proposition 

In the second price auction, there exists a unique Bayesian Nash 
equilibrium which involves 

βII (v ) = v . 

It is straightforward to generalize the exact same result to the 
situation in which bidders’ values are not independently and 
identically distributed. As in the complete information case, bidding 
truthfully remains a weakly dominant strategy. 
The assumption of private values is important (i.e., the valuations are 
known at the time of the bidding). 
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Game Theory: Lecture 17 Auctions 

Second Price Auctions (continued) 

Let us next determine the expected payment by a bidder with value v , 
and for this, let us focus on the case in which valuations are 
independent and identically distributed 

Fix bidder 1 and define the random variable y1 as the highest value 
among the remaining N − 1 bidders, i.e., 

y1 = max{v2, . . . , vN }. 

Let G denote the cumulative distribution function of y1. 

Clearly,

G (y ) = F (y )N−1 for any y ∈ [0, v̄ ]
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Game Theory: Lecture 17 Auctions 

Second Price Auctions (continued) 

In a second price auction, the expected payment by a bidder with 
value v is given by 

m II (v ) = Pr(v wins) × E[second highest bid | v is the highest bid] 
= Pr(y1 ≤ v ) × E[y1 | y1 ≤ v ] 
= G (v ) × E[y1 | y1 ≤ v ]. Payment II 

Note that here and in what follows, we can use strict or weak 
inequalities given that the relevant random variables have continuous 
distributions. In other words, we have 

Pr(y1 ≤ v ) = Pr(y1 < v ). 
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Game Theory: Lecture 17 Auctions 

Example: Uniform Distributions 

Suppose that there are two bidders with valuations, v1 and v2, 
distributed uniformly over [0, 1]. 
Then G (v1) = v1, and 

E[y1 | y1 ≤ v1] = E[v2 | v2 ≤ v1] = 
v

2 
1 
. 

Thus 
2 

II (v ) = 
v

m . 
2 

If, instead, there are N bidders with valuations distributed over [0, 1],


G (v1) = (v1)
N−1


E[y1 | y1 ≤ v1] = 
N

N 
− 1 

v1,


and thus 
II (v ) = 

N − 1 N m v . 
N 
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Game Theory: Lecture 17 Auctions 

First Price Auctions


In a first price auction, each bidder submits a sealed bid of bi , and 
given these bids, the payoffs are given by 

Ui ((bi , b−i ) , vi ) = 
vi − bi if bi > maxj �=i bj 

0 if bi > maxj=i bj . 

Tie-breaking is similar to before. 

In a first price auction, the equilibrium behavior is more complicated 
than in a second-price auction. 

Clearly, bidding truthfully is not optimal (why not?). 

Trade-off between higher bids and lower bids. 

So we have to work out more complicated strategies. 
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Game Theory: Lecture 17 Auctions 

First Price Auctions (continued) 

Approach: look for a symmetric (increasing and differentiable) 
equilibrium. 

Suppose that bidders j = 1 follow the symmetric and differentiable 
equilibrium strategy βI = β, where 

βi : [0, v̄ ] → R+. 

We also assume that β is increasing. 

We will then allow player 1 to use strategy β1 and then characterize β 
such that when all other players play β, β is a best response for player 
1. Since player 1 was arbitrary, this will complete the characterization 
of equilibrium. 

Suppose that bidder 1 value is v1 and he bids the amount b (i.e., 
β (v1) = b). 
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Game Theory: Lecture 17 Auctions 

First Price Auctions (continued) 

First, note that a bidder with value 0 would never submit a positive 
bid, so


β(0) = 0.


Next, note that bidder 1 wins the auction whenever

maxi =1 β(vi ) < b.


Since β( ) is increasing, we have ·

max β(vi ) = β(max vi ) = β(y1), 
i=1 i=1 

where recall that

y1 = max{v2, . . . , vN }.


This implies that bidder 1 wins whenever y1 < β−1(b). 
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Game Theory: Lecture 17 Auctions 

First Price Auctions (continued) 

Consequently, we can find an optimal bid of bidder 1, with valuation 
v1 = v , as the solution to the maximization problem 

max G (β−1(b))(v − b). 
b≥0 

The first-order (necessary) conditions imply 

g (� 
β−1(b)) � (v − b) − G (β−1(b)) = 0, (∗)

β� β−1(b) 

where g = G is the probability density function of the random 
variable y1. [Recall that the derivative of β−1(b) is 1/β� β−1(b) ]. 

This is a first-order differential equation, which we can in general 
solve. 

33 



� � 

� 

Game Theory: Lecture 17 Auctions 

First Price Auctions (continued) 

More explicitly, a symmetric equilibrium, we have β(v ) = b, and 
therefore (∗) yields 

G (v )β�(v ) + g (v )β(v ) = vg (v ). 

Equivalently, the first-order differential equation is 

d 
G (v )β(v ) = vg (v ),

dv 
with boundary condition β(0) = 0. 
We can rewrite this as the following optimal bidding strategy 

1 v 
β(v ) = 

G (v ) 0 
yg (y )dy = E[y1 | y1 < v ]. 

Note, however, that we skipped one additional step in the argument:

the first-order conditions are only necessary, so one needs to show

sufficiency to complete the proof that the strategy

β(v ) = E[y1 | y1 < v ] is optimal.
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Game Theory: Lecture 17 Auctions 

First Price Auctions (continued) 

This detail notwithstanding, we have: 

Proposition 

In the first price auction, there exists a symmetric equilibrium given by 

βI (v ) = E[y1 | y1 < v ]. 
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Game Theory: Lecture 17 Auctions 

First Price Auctions: Payments and Revenues 

In general, expected payment of a bidder with value v in a first price 
auction is given by 

m I (v ) = Pr(v wins) × β (v ) 
= G (v ) × E[y1 | y1 < v ]. Payment I 

This can be directly compared to (Payment II), which was the 
payment in the second price auction 
(mII (v ) = G (v ) × E[y1 | y1 ≤ v ]). 
This establishes the somewhat surprising results that 
mI (v ) = mII (v ), i.e., both auction formats yield the same expected 
revenue to the seller. 
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Game Theory: Lecture 17 Auctions 

First Price Auctions: Uniform Distribution


As an illustration, assume that values are uniformly distributed over 
[0, 1]. 
Then, we can verify that 

βI (v ) = 
N − 1 

v . 
N 

Moreover, since G (v1) = (v1)
N−1, we again have 

m I (v ) = 
N − 1 

v N . 
N 
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Game Theory: Lecture 17 Auctions 

Revenue Equivalence 

In fact, the previous result is a simple case of a more general theorem. 

Consider any standard auction, in which buyers submit bids and the 
object is given to the bidder with the highest bid. 

Suppose that values are independent and identically distributed and 
that all bidders are risk neutral. Then, we have the following theorem: 

Theorem 

Any symmetric and increasing equilibria of any standard auction (such 
that the expected payment of a bidder with value 0 is 0) yields the same 
expected revenue to the seller. 
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Game Theory: Lecture 17 Auctions 

Sketch Proof


Consider a standard auction A and a symmetric equilibrium β of A. 

Let mA(v ) denote the equilibrium expected payment in auction A by 
a bidder with value v . 

Assume that β is such that β(0) = 0. 

Consider a particular bidder, say bidder 1, and suppose that other 
bidders are following the equilibrium strategy β. 

Consider the expected payoff of bidder 1 with value v when he bids 
b = β(z) instead of β(v ), 

UA(z , v ) = G (z)v − m A(z). 

Maximizing the preceding with respect to z yields 

∂ d 
UA(z , v ) = g (z)v − m A(z) = 0. 

∂z dz 
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Game Theory: Lecture 17 Auctions 

Sketch Proof (continued) 

An equilibrium will involve z = v (Why?) Hence, 

d 
m A(y ) = g (y )y for all y ,

dy 

implying that 

v 
m A(v ) = 

0 
yg (y )dy = G (v ) × E[y1 | y1 < v ], 

(General Payment) 
establishing that the expected revenue of the seller is the same 
independent of the particular auction format. 

(General Payment), not surprisingly, has the same form as (Payment 
I) and (Payment II). 
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