6.301 Solid-State Circuits
Recitation 21: Current-Feedback, or Transimpedance, Amplifiers
Prof. Joel L. Dawson

By now, you’ve practically grown up hearing about a “constant gain-bandwidth product.” Where
does that come from? And 1s it really a physical law?

The answer to the second question is that it is not a physical law. While it is true that you will often
find it easier to get high gain for low bandwidths, this is more a consequence of the topology choices
that we make than an expression of nature’s laws. For instance, there is something called a
“distributed amplifier,” for which gain trades oft with delay rather than bandwidth.

So what about the first question?

CLASS EXERCISE:
A simple inverting amplifier using an op-amp can be approximately modeled as follows:
X(s) + 1 K
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Here, G is the ideal gain, and the dynamics of the op-amps are captured by £ . Show that as the gain

G 1s varied, this system exhibits a constant gain-bandwidth product.

(Workspace)

Hint: x () T > G(s) > Y(s)
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Op-amps are often “compensated” such that their dynamics are dominated by one low-frequency
pole. Op-amps are almost everywhere...hence the common belief in a fundamental gain-bandwidth
product.

The current-feedback amplifier happens to be an amplifier that does not follow the constant gain-
bandwidth “rule”...

Current-Feedback Amplifiers
Let’s look at the implementation of a typical tranimpedance amplifier.
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The underlying assumption is that i, i,, and i, together satisfy KCL. Thus,
(1) iy =1,
(2) =i +ic

W)= @ A=y +ic

1
ic=—ly =|Vv,=i.z=—Zi

Pretty simple. It turns out that we can use this circuit in many instances just like a voltage op-amp.
Let’s see how.
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A start to the analysis is to observe that, as in the case of the voltage op-amp, V, =V_  (=0). The

reasons are different, of course. For the voltage op-amp, it was negative feedback, combined with
infinite gain, that forced V, =V_. Here, V, =V_ by construction, because we have placed a voltage

buffer between them.

Page 3



6.301 Solid-State Circuits

Recitation 21: Current-Feedback, or Transimpedance, Amplifiers
Prof. Joel L. Dawson

Very well. We write KCL at the inverting input:

v Vo .
vy Yooy
Rl R2
. . Vo
Recall that v, =-Zi, =i, =——
zZ
Vi, Vo _ Yo
R R Z

Now the idea behind a transimpedance amp is that Z , the transimpedance, is far and away the
biggest impedance around.

Z>R,
ZR, 1
Vo =~ - Vi
R,+Z )R,
Vo= — &v Just like a voltage
0 IN
R op-amp!
1 p-amp
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It turns out that with the transimpedance amplifier we are not subject to the constant gain-
bandwidth product rule. R
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Block diagram: ! 1 )@I_"> —Z(s) » Vo

R,
Rearranging: b, R, il Z(s)
EE == 1%
o—y = F— 5 >V,
H_J 111
Gain depends
on R and Ry
— v

——
The dynamics depend only on Ry

So you can fix your bandwidth by choosing R, , and set your gain by choosing R, in relation to R, .

We’ll close by looking at a common input buffer structure.
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Buffer circuit topology: (sometimes called a “diamond circuit”)
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For design project, read course notes about slew rate for transimpedance amplifiers.
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