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By now, you’ve practically grown up hearing about a “constant gain-bandwidth product.” Where

does that come from? And is it really a physical law?


The answer to the second question is that it is not a physical law. While it is true that you will often

find it easier to get high gain for low bandwidths, this is more a consequence of the topology choices

that we make than an expression of nature’s laws. For instance, there is something called a

“distributed amplifier,” for which gain trades off with delay rather than bandwidth.


So what about the first question?


CLASS EXERCISE:

A simple inverting amplifier using an op-amp can be approximately modeled as follows:


Y (s)1 

G 

K 

s 
Σ 

− 

+ 
G 

X(s) 

Here, G is the ideal gain, and the dynamics of the op-amps are captured by ks . Show that as the gain 
G is varied, this system exhibits a constant gain-bandwidth product. 

(Workspace) 
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Op-amps are often “compensated” such that their dynamics are dominated by one low-frequency 
pole. Op-amps are almost everywhere…hence the common belief in a fundamental gain-bandwidth 
product. 

The current-feedback amplifier happens to be an amplifier that does not follow the constant gain-
bandwidth “rule”… 

Current-Feedback Amplifiers

Let’s look at the implementation of a typical tranimpedance amplifier.
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The underlying assumption is that i , i2 , and iN together satisfy KCL. Thus, 

(1) i1 + iN = i2 

(2) i1 = i2 + iC 

(1) →  (2) i1 = i1 + iN + iC 

iC = −iN ⇒ v0 = iCz = −ZiN 

Pretty simple. It turns out that we can use this circuit in many instances just like a voltage op-amp. 
Let’s see how. 

R2 

A start to the analysis is to observe that, as in the case of the voltage op-amp, V+ = V− (= 0) . The 
reasons are different, of course. For the voltage op-amp, it was negative feedback, combined with 
infinite gain, that forced V+ = V− . Here, V+ = V−  by construction, because we have placed a voltage 
buffer between them. 

+ 

iN 

− 

− 
vIN 

v0 = ZiN+ 

+1 

R1 

Page 3 



6.301 Solid-State Circuits 
Recitation 21: Current-Feedback, or Transimpedance, Amplifiers 
Prof. Joel L. Dawson 

Very well. We write KCL at the inverting input: 

vIN + 
v0 = iNR1 R2 

Recall that v0 = −ZiN ⇒ iN = − 
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Now the idea behind a transimpedance amp is that Z , the transimpedance, is far and away the 
biggest impedance around. 

Z  R2 

⎛ ZR2 ⎞ 1 v0 = − 
⎝⎜ R2 + Z ⎠⎟ R1 

vIN 

v0 ≈ − 
R2 Just like a voltage vIN R1 

op-amp! 
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It turns out that with the transimpedance amplifier we are not subject to the constant gain-
bandwidth product rule. R2 
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Gain depends 
on R1 and R2 

The dynamics depend only on R2 

So you can fix your bandwidth by choosing R2 , and set your gain by choosing R1 in relation to R2 . 

We’ll close by looking at a common input buffer structure. 
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Buffer circuit topology: (sometimes called a “diamond circuit”) 
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For design project, read course notes about slew rate for transimpedance amplifiers. 
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