
6.301 Solid-State Circuits 
Recitation 25: More on Charge Control and Space-Charge Lasers 
Prof. Joel L. Dawson 

First, let’s do some cleanup from the last recitation. We said that we would treat the problem of 
emitter switching as an example of how to use the charge control equations. 

I
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i
C

Note that from our experience with Lab 2, we might expect this common base stage to be relatively 
fast. What does charge control have to say about that? 

Use charge-control equations for emitter current. Notice that I follow my own sign convention 
here…I choose to define current flow out of the emitter as positive. 

If we solve this, we find that 

Where ! is defined by 

Writing this out: 
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So the time constant involved is smaller than !
F

! Recall that the time constant associated with base 
current drive was !

BF
. Now we have all we need to calculate i

C
: 
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And for i
B

, we apply KCL (again remembering the sign convention that I have chosen): 
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Initially, then, the base current = i
E

! 

CLASS EXERCISE


Consider the following circuit: 
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At time t=0, we open switch S1. Derive and sketch IC as a function of time. 

(Workspace) 
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Take a moment to remind yourself of what is physically happening. We have assumed that 
recombination in the base is negligible. Thus, the collector current continues just as long as it takes to 
clear q

F
out of the base via reverse injection. 

Space Charge Layers 

This, unfortunately, is where things get messy. The upside is that working through the math here will 
give you a very detailed understanding of what goes on in a bipolar transistor. 

Recall that the BC and the BE pn junctions have capacitances associated with their depletion 
regions. We are able to define a nonlinear, voltage-dependent capacitance associated with these 
depletion regions, and relate charge and voltage as 

dQ = C(V )dV

To figure out how much charge it takes to get to a voltage V0, we must integrate 
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As a check, we note that with a capacitance that is independent of voltage, we have 

Q
0
= CdV = C dV = CV

0
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0
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Just as we expect.


Now for this BJT, we have


q
VE

qVC

Page 3 



6.301 Solid-State Circuits 
Recitation 25: More on Charge Control and Space-Charge Lasers 
Prof. Joel L. Dawson 

We have to store charge qVC on Cµ , and q
VE

on Cje (part of C
!

). This charge has to be supplied to 

the base, and that is why these capacitances are relevant to us here. For Cµ , we have 
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If we’re curious about the charge on Cµ , we must perform the integration 
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Where K
C
=
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C
! = 1" m
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That’s a lot of work, and for what? Well, for one, we can now write down the charge on these 
nonlinear capacitors as a function of V

BE
and V

BC
. A typical m

C
for a base-collector junction is 1/2, 

and for a good base-emitter junction is 1/3. We have 
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And the additional charge control terms 

iB =
dQVC

dt
+
dQVE

dt

iC = !
dQVC

dt

iE = !
dQVE

dt

Ultimately, these monstrous expressions for will be useful because, once we compute 
the total charge necessary to get to a particular , we will sweep the nonlinearity 

Q
VC

and Q
VE

V
BC

or V
BE

completely under the rug. 

This calls for an example. 

Consider the following circuit with a base current drive. 
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#
R
= 5ns

#
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= 29ns

We ask, how long does it take to get out of cutoff? In order to get out of cutoff, V
BE

must equal 
600mV. In order to get V

BE
to 600mV, we must charge Q

VE
and Q

VC
appropriately. The total 

amount of charge needed is 

!QVE = QVE (0.6V ) "QVB (0V ) = 3.8pC

!QVC = QVC ("9.6V ) "QVC ("10.2V ) = 0.6pC
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Total charge that must be supplied by i
B

to get out of cutoff: 4.4pF. 

And here is where we sweep aside the nonlinearity. We say that 

!t =
!Q

iB
=
!QVE + !QVC

iB

=
4.4 pC

0.2mA
= 22ns

Good for a ballpark figure. 
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