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Supplementary Reading: For basic Dirac notation quantum mechanics:

e Section 2.2 of M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information

e Sections 1.1-1.16 of W.H. Louisell, Quantum Statistical Properties of Radiation.

Problem 2.1

Here we shall explore the use of wave plates to perform polarization transformations
on a single photon. The polarization state of a +z-propagating, frequency-w photon
at z = 0 is characterized by a complex-valued unit vector,

i= { o ] , (1)
such that Relie™*!] describes the time evolution of the photon at z = 0 where
i'i = |a,|* +]a,[? =1,

with

is the unit-length condition for i.

(a) For our monochromatic photon, propagation through L m of material in which
light of arbitrary polarization propagates at velocity ¢/n, where n is the ma-
terial’s refractive index at frequency w, leads to a phase delay ¢ = wnlL/c.
Thus the time evolution of the photon at z = L is given by Re[ie 7«(—nE/9)] =
Re[i'e 7], where i’ = ie’?.

Show that the polarization state i’ is identical to the polarization state i, i.e.,

the contour traced out by Re[ie ] in the z-y plane is identical to that traced
out by Rel[i’'e™*f].

(b) Wave plates are made of birefringent materials, i.e., materials which have differ-
ent velocities of propagation for light polarized along their principal axes. When
these axes are aligned with z and vy, respectively, propagation of a monochro-
matic photon—whose polarization at z = 0 is given by Eq. (1)—results in a

new polarization at z = L, ’
o axej(z’ac
=[] )
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where ¢, = wn,L/c and ¢, = wn, L/c give the respective phase shifts in terms
of the propagation velocities ¢/n, and ¢/n, along the = and the y axes. A
quarter-wave plate (QWP) is one for which ¢, — ¢, = 7/2. Suppose that a
photon of +45° linear polarization,

[y V2
S 1/V2
is the input to a QWP whose principal axes are aligned with x and y, respec-
tively.
Show that the output of this QWP is circularly polarized.
Suppose that this circularly polarized output is the input to another QWP

whose principal axes are aligned with x and y, respectively. What is the result-
ing polarization of the output from this QWP?

A half-wave plate (HWP) is one for which the phase difference between propa-
gation along its principal axes is wrad. Suppose that a photon of polarization

~[3]

is the input to an HWP whose “fast” (low refractive index) axis is parallel to
the unit vector
ifast = 1y COS(0) + 1, sin(6),

and whose “slow” (high refractive index) axis is parallel to the unit vector
Idow = —iy sin(f) + Zy cos(f).
What is the polarization state at the output of the HWP?

Suppose we wish to transform an x-polarized input photon,

. 1
lin = I O
into an output photon of polarization state,
. [ o,
1 =
out I ay :|

Show that this can be done by first using a half-wave plate to transform i;, to

and then using another wave plate, whose principal axes are aligned with =
and y respectively, and whose propagation phase difference ¢, — ¢, is chosen
appropriately, to transform igwp into igy.



(e) The polarization transformation scheme you verified in (d) is not a convenient
experimental approach, because it requires a phase plate with a controllable
propagation phase difference ¢, — ¢,. Here we consider an alternative approach
that only needs a QWP and an HWP. Suppose that we wish to transform an
arbitrary given input polarization

into horizontal polarization

) 1
lout:|i0:|'

Because i, is, in general, an elliptical polarization, there must be a Cartesian
coordinate system, (z',y), in which this input polarization takes the form

/
i' B [ am }
m — / )
Oéy

with o = jkay, for k a positive constant. Use this fact to argue that a QWP,
with its fast axis aligned in the 3’ direction, will convert i;, into linear polariza-
tion, after which an HWP can be used to obtain an iy, that is linearly polarized
in the = direction. Using these results, explain how propagation through an
HWP and a QWP can be used to transform an initially z-polarized photon into
any desired polarization state.

Problem 2.2
Here we shall introduce the Poincaré sphere, viz., a 3-D real representation for the
2-D polarization state
i= ,
Qry

of a +z-propagating, frequency-w photon. Define a real-valued 3-vector, r as follows,

1 [ 2Re[aa,]
r=|r | =| 2Im[la,
r3 | oal* — foy|?

(a) Show that knowledge of r is equivalent to knowledge of i, i.e., r completely
describes photon’s polarization.

(b) Show that ifi = 1 implies that r’r = r? + r2 + r2 = 1, i.e., the photon’s
polarization-state lies on the unit-sphere (called the Poincaré sphere) in r space.

(¢c) Where do x and y polarizations appear on the Poincaré sphere? Where do left
and right circular polarizations appear on this sphere?



Problem 2.3

Let A be a linear operator that maps kets in the Hilbert space H into other kets in
this space, i.e., for every |z) € H, there is a |y) € H that satisfies |y) = A|z). Let
{|¢n) :n=1,2,..., } be an arbitrary complete orthonormal (CON) set of kets in H,

ie.,
1, for n =m,
0, for n # m.

I = |¢a) (ol
n=1

where [ is the identity operator on H.

(a) Show that the operator A is completely characterized by its {¢,} matrix ele-
ments, viz., { (¢;m|A|¢n) 1 1 <n,m < 0o}, by proving that

A= 5 (6ulA16.) 16 (64

m=1 n=1

(b) Let |z) = >"7° | x,|¢p,) be an arbitrary ket in H and let |y) = Alz). Show that

= Z ym|¢m> with Ym = Z<¢m|A‘¢n>xn7 for 1 < n,m < oQ.
m=1 n=1

(c) Specialize your results from (a) and (b) to the case in which A is an observable,
and the {¢,} are its CON eigenkets.

Problem 2.4 )
Consider a quantum system, S, in the Schrodinger picture, with Hamiltonian H.
Suppose that H has distinct, real-valued, non-negative, discrete eigenvalues { h,
n=20,1,2,..., } and associated orthonormal eigenkets, { |h,) :n =0,1,2,..., }.

(a) Show that the time-evolution operator obeys

o0

Ult,to) = > _ exp[—jhn(t — to)/R)|hn)(hn|, for t > tq.

n=0

(b) Show that
[U(t,tg),ﬁ} = [UT(t,to),ﬁl] =0,

i.e., the time-evolution operator and its adjoint both commute with the Hamil-
tonian.



(c) Suppose that the system is in the state (o)) = |h1) at time ¢ = to. Find the
state of the system [¢(t)) at an arbitrary later time ¢.

(d) Suppose that [1(t)) is as found in (c), and that we measure the observable
O =" oxlox) okl
k=1

at time t. Find Pr(O—measurement outcome = o) for k = 1,2,3,... Use this
result to explain why the eigenkets of H are called stationary states.

Problem 2.5

Here we shall derive the time-frequency uncertainty principle of classical signal anal-
ysis. Essentially the same derivation can lead to the Heisenberg uncertainty principle
for position and momentum by means of wavefunction (rather than Dirac-notation)
quantum mechanics. Let z(t) be a complex-valued, square-integrable time function
whose Fourier transform is

X(f) = /oodtx(t)e_ﬂ”ft.

oo

Define a normalized intensity for z(t) via,

2
p(t) = L
JREC
and a normalized intensity for X (f) via,
2
P
| arixmr

(a) Show that p(t) and P(f) can be thought of as probability density functions,
i.e., they are non-negative functions that integrate to one.

(b) Define the root-mean-square time duration for x(t) to be,

7= / dt £2p(t),

oo

and the root-mean-square bandwidth of X (f) to be,

W= \//OodfoP(f).
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Show that

d o .
=[x e

dx(t)
t

. Then, use Parseval’s theorem

i.e., j2r fX(f) is the Fourier transform of
and the Schwarz inequality and to prove that

)

dx(t
dt

| atiator

Use the result from (b) and the fact that |z| > |Re(z)|, for any complex number

z, to show that,
* dz(t
Re </ dttx*(t)%)‘
T™W > —

o / dt |2(t)]?
1
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Show that equality occurs in (b) if and only if z(t) = K exp(at?), where K and
a are complex-valued constants with Re(a) < 0. Assume that x(t) is of this
form and then show that equality occurs in (c) if and only if a is real. Verify
that

1 ‘/ dt ta* (1)
W > e
27

B exp(—t*/4t])
z(t) = (27rt3)1/4 ’

has Fourier transform
X(f) = (87Tt8)1/4 exp(—47r2f2tg),

and that this z(t) has T' = t, and this X(f) has W = 1/4nt,, thus giving
TW = 1/4r.



