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Problem 4.1 
Here we shall show that the creation operator, â†, does not have any non-zero eigen­
kets. Suppose that a non-zero ket |β� satisfies 

â†|β� = β|β�, (1) 

where β is a complex number. Use the completeness of the number kets to expand 
|β� as follows, 

∞

|β� = bn|n�, 
n=0 

where bn = �n|β�. Substitute this expansion into Eq. (1) and show that the only 
possible solution is bn = 0 for all n, i.e., the creation operator has no non-zero 
eigenkets. 

Problem 4.2 
Here we shall work out some properties of the coherent states. Let â and â† be the 
annihilation and creation operators for the frequency-ω quantum harmonic oscillator 
discussed in class. Let { |α� : α ∈ C } be the coherent states, 

∞
αn 

|α� ≡ √
n! 

exp(−|α|2/2)|n�, 
n=0 

where { |n� : 0 ≤ n < ∞} are the number states and α ∈ C is an arbitrary complex 
number. 

(a) Use the orthonormality of the number states, and the power series for the ex­
ponential function, to evaluate the inner product �α|β� between two coherent 
states |α� and |β�. Are the coherent states normalized to unit length? Are 
coherent states with different eigenvalues orthogonal? 

(b) Use the completeness of the number states to show that the coherent states are 
overcomplete, i.e., � 

d2α 
Î = 

π 
|α��α|, 

where d2α ≡ dα1dα2, with α1 ≡ Re(α) and α2 ≡ Im(α), and the integration 
region is the entire complex plane. 

1




� 

� � 

� � 

� � 

� � 

� � 

(c) Use the result from (b) to show that, 

d2α 
â = âÎ = α ,

π 
|α��α|

â† = Î â† = 
� 

d2α 
π 

α∗|α��α|, 

ââ† = â ̂Iâ† = 
� 

d2α 
π 

|α|2|α��α|, 

â†â = ââ† − 
� 
â, ̂a† 

� 
= 

� 
d2α 
π 

(|α|2 − 1)|α��α|. 

Problem 4.3 
Here we shall develop a little commutator calculus that will be needed in the next 
problem. Let â and â† be the annihilation and creation operators, respectively, of a 
quantum harmonic oscillator, and let â1 ≡ Re(â) and â2 ≡ Im(â) be the associated 
quadrature operators, i.e., the normalized versions of position and momentum for a 
mechanical oscillator, or charge and flux for an LC oscillator. 

(a) Use [â1, â2] = j/2 to show that 

â1, â
2
2 = jâ2. 

Assume that 
â1, â

k 
2 = jkâ
k−1 

2 /2, for k > 2.


Show that 
â1, â2 

k+1 = j(k + 1)â k 
2/2, 

/2, for k = 1, 2, 3, . . . 

thus completing the induction proof that 

â1, â
k 
2 = jkâ
k−1 

2 

By analogy with classical functions we define the following operator derivative,


kdâ
2 ≡ kˆk
2
−1 a ,

dâ2 

so that 
kdâ


â1, â
k 
2 = (j/2)
 2 ,
 for k = 1, 2, 3, . . .


dâ2 
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(b) Follow a similar induction argument to that used in (a) to prove the commuta­
tion rule, 

dâ1 
k 

â2, â
k = −jkâk−1/2 = −(j/2)1 1 ,
 for k = 1, 2, 3, . . . ,


dâ1 

where the last equality defines the operator derivative. 

(c) Suppose that F (α1) and G(α2) are functions of real variables α1 and α2 that 
have convergent Taylor’s series, 

∞
αn dnF (α1)

F (α1) = 1 for −∞ < α1 < ∞,,

n! dαn 

1 α1=0n=0 

∞
αn 

2 dnG(α2)
G(α2) =
 for −∞ < α2 < ∞.,


n! dα2 
n 

α2=0n=0 

Define the operators F (â1) and G(â2) by the operator-valued Taylor’s series, 

∞
â1 

n dnF (α1)
F (â1) = ,


n! dα1 
n 

α1=0=0n�∞ â2 
n dnG(α2)

G(â2) = .

n! dα2 

n 
α2=0n=0 

Use the results of (a) and (b) to find the commutators [â1, G(â2)] and [â2, F (â1)]. 

Problem 4.4 
Here we shall show that the eigenkets of a quadrature operator can be found from a 
translation operator applied to the zero-eigenvalue eigenket. 

(a) Assume that |α1�1 is an eigenket of the quadrature operator â1 with eigenvalue 
α1. Because â1 is Hermitian, α1 is a real number. Define a translation operator, 

∞

n! 
n=0 

(−2jξ)n 
ˆ
A1(ξ) ≡ exp(−2jξâ2) = â
n 

2 , for −∞ < ξ < ∞.


Use

â1Â1(ξ)|α1�1 = Â1(ξ)â1|α1�1 + â1, Â1(ξ) |α1�1, 

and the results from Problem 4.3 to show that Â1(ξ)|α1�1 is an eigenket of â1 

with eigenvalue α1 + ξ, for any real number ξ. 
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(b) Let |0�1 be the â1 eigenket whose eigenvalue is zero. Show that 

|α1�1 = exp(−2jα1â2)|0�1, 

is an â1 eigenket with eigenvalue α1 and that 1�α1|α1�1 = 1�0|0�1. 

(c) Assume that |α2�2 is an eigenket of the quadrature operator â2 with eigenvalue 
α2. Because â2 is Hermitian, α2 is a real number. Define a translation operator, 

ˆ	
∞

(2jξ)n
nA2(ξ) ≡ exp(2jξâ1) = â1 , for −∞ < ξ < ∞. 

n! 
n=0 

Use � �

â2Â2(ξ)|α2�2 = Â2(ξ)â2|α2�2 + â2, Â2(ξ) |α2�2,


and the results from Problem 4.3 to show that Â2(ξ)|α2�2 is an eigenket of â2 

with eigenvalue α2 + ξ, for any real number ξ. 

(d) Let |0�2 be the â2 eigenket whose eigenvalue is zero. Show that 

|α2�2 = exp(2jα2â1)|0�2, 

is an â2 eigenket with eigenvalue α2 and that 2�α2|α2�2 = 2�0|0�2. 

Problem 4.5 
Here we shall continue our development of the quadrature-operator eigenkets. The 
results of Problem 4.4 show that these operators have continuous spectra, i.e., their 
eigenvalues are {−∞ < α1 < ∞} and {−∞ < α2 < ∞}, respectively. Because â1 

and â2 are observables, the appropriate orthonormality and completeness conditions 
for their eigenkets are therefore, 

1�α�
1 α1�1 = δ(α1 − α1

� ) and 2�α2
� α2�2 = δ(α2 − α2

� ), 

∞	 ∞ 

Î = dα1 |α1�11�α1| = dα2 |α2�22�α2|. 
−∞	 −∞ 

(a) Use the Heisenberg	 uncertainty principle to show that |α1�1 and |α2�2 have 
infinite average energy, i.e., that �Ĥ� = �ω(�â2

1� + �â2
2�) = ∞ for these states. 

(b) We want to determine the relationship between the eigenkets |α1�1 and |α2�2. 
Use the results of Problem 4.4 to show that 

2�α2|α1�1 = exp(−2jα1α2)2�0|0�1. 

Hint: The power series expansion of Â1(ξ) can be used to show that |α2�2 

is an eigenket of this translation operator; likewise |α1�1 is an eigenket of the 
translation operator Â2(ξ). 
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(c) Find |2�0|0�1|2 by evaluating 

∞ 

2�α�
2|α2�2 = 2�α2

� |Î|α2�2 = 2�α�
2| dα1 |α1�11�α1| |α2�2, 

−∞ 

using the result of (b). Assume that 2�0|0�1 is positive real to completely pin 
down 2�α2|α1�1. 
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