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Problem 6.1 

Here we begin the analysis of quantum linear transformations by treating the single-
frequency quantum theory of the beam splitter. Consider the arrangement shown in 
Fig. 1. Here, âIN and b̂IN are the annihilation operators of the frequency-ω components 
of the quantum fields entering the two input ports of the beam splitter, and âOUT 

and b̂OUT are the corresponding frequency-ω annihilation operators at the two output 
ports. The input-output relation for this beam splitter is the following: 

b̂
OUT 

a a 
IN OUT 

^ 

^ 

^ 

b
IN 

Figure 1: Single-frequency beam splitter configuration 

âOUT = 
√

ǫ âIN + 
√

1 − ǫ b̂IN 

b̂OUT = −
√

1 − ǫ âIN + 
√

ǫ b̂IN, 

where 0 < ǫ < 1 is the power-transmission of the beam splitter, i.e., the fraction of 
the incident photon flux that passes straight through the device (from âIN to âOUT or 
from b̂IN to b̂OUT). 

(a) Show that the beam splitter’s input-output relation is lossless, i.e., prove that 

â† 
OUTâOUT + b̂OUT 

† b̂OUT = â† 
INâIN + b̂IN 

† b̂IN, 

so that regardless of the joint state of the âIN and b̂IN modes, the total photon 
number in the output modes is the same as the total photon number in the 
input modes. 
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(b) The inputs to the beam splitter have the usual commutators for annihilation 
operators of independent modes: 

[âIN, b̂IN] = [âIN, b̂† IN] = 0 

[âIN, âIN
† ] = [̂bIN, b̂IN

† ] = 1. 

Show that the beam splitter’s input-output relation is commutator preserving, 
i.e., prove that 

[ˆ ˆ b̂† ] = 0aOUT, bOUT] = [âOUT, OUT

[âOUT, â† 
OUT] = [̂bOUT, b̂† OUT] = 1. 

(c) The joint state of the input modes, âIN and b̂IN, is their density operator, ρ̂IN. 
This density operator is fully characterized by its normally-ordered form, 

ρ
(n)

(α∗, β∗ ; α, β) ≡ ˆIN IN〈β|IN〈α|ρIN|α〉IN|β〉IN, 

where α〉IN and β〉IN are the coherent states of the âIN and b̂IN modes. The 4­| |
(n)

D Fourier transform of ρIN (α
∗, β∗ ; α, β) is then the anti-normally ordered joint 

characteristic function, 

χρIN (ζ∗ −ζa
∗ âIN−ζ

b 

∗b̂IN ζaâ
IN

† +ζb b̂
† 
IN 

A a , ζb
∗ ; ζa, ζb) ≡ tr ρ̂INe e , 

where ζa and ζb are complex numbers. Relate the anti-normally ordered char­
acteristic function of the output modes, 

a b OUT OUT χρOUT (ζ∗, ζ∗ ; ζa, ζb) ≡ tr ˆ −ζ∗ âOUT−ζ∗b̂OUTe ζaâ
† +ζb b̂

† 

,A a b ρOUTe 

to that for the input modes by: (1) using the beam splitter’s input-output 
relation to write the exponential terms in the χρOUT (ζ∗, ζ∗ ; ζa, ζb) definition in A a b

terms of the input-mode annihilation and creation operators, and (2) taking the 
expectation of the product of the resulting exponential terms by multiplying by 
the joint density operator of the input modes and taking the trace. 

(d) Suppose that the joint state of âIN and b̂IN is the two-mode coherent state 
|αIN〉IN|βIN〉IN. Use the result of (c) to show that the joint state of âOUT and 
b̂OUT is the two-mode coherent state |αOUT〉OUT|βOUT〉OUT where 

αOUT = 
√

ǫ αIN + 
√

1 − ǫ βIN, 

βOUT = −
√

1 − ǫ αIN + 
√

ǫ βIN. 
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Problem 6.2 

Here we shall develop a moment-generating function approach to the quantum statis­
tics of single-mode direct detection. Suppose that an ideal photodetector is used 
to make the number-operator measurement, N̂ ≡ â†â, on a single-mode field whose 
state is given by the density operator ρ̂ and let N denote the classical random variable 
outcome of this quantum measurement. The moment-generating function of N is 

∞ ∞ 

MN (s) ≡ e sn Pr(N = n) = e sn 〈n|ρ̂|n〉, for s real, (1) 
n=0 n=0 

where the second equality follows from Problem 3.2(b). (The moment-generating 
function of a random variable, from classical probability theory, is the Laplace trans­
form of the probability density function of that random variable—cf. the character­
istic function, which is the Fourier transform of the probability density—and hence 
provides a complete characterization of the random variable. In other words, the 
probability density function can be recovered from the moment-generating function 
by an inverse Laplace transform operation.) 

(a) Define a function QN (λ) as follows, 

∞ 

QN(λ) = (1 − λ)n 〈n|ρ̂|n〉, for λ real. (2) 
n=0 

Show how MN(s) can be found from QN (λ). 

(b) Show that 

dkQN(λ) �
� ∞ 

dλk 
�

� 

λ=0 

= 
n=k 

(−1)k n(n − 1)(n − 2) · · · (n − k + 1)〈n|ρ̂|n〉 

= (−1)k 〈â†kâk 〉, for k = 1, 2, 3 . . . 

(The last equalilty explains why 〈â†kâk〉 is called the kth factorial moment of 
the photon count.) 

(c) Suppose that ρ̂ = , i.e., that the field mode is in the mth number state. |m〉〈m|
†kˆkFind the factorial moments { 〈â a 〉 : k = 1, 2, 3, . . . }. Use the Taylor series, 

∞ � 
�

� 

QN(λ) = 
� 1 dkQN(λ) 

�

� 

λk 

k! dλk 

k=0 λ=0 

to find QN(λ) and then use the result of part (a) to find MN (s). Verify that 
this moment-generating function agrees with what you would find directly from 
Eq. (1). 
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(d) Suppose that ρ̂ = , i.e., that the field mode is in a coherent state with |α〉〈α|
†kˆkeigenvalue α. Find the factorial moments { 〈â a 〉 : k = 1, 2, 3, . . . }. Use the 

Taylor series, 
∞ � 

�
� 

QN(λ) = 
� 1 dkQN(λ) 

�

� 

λk 

k! dλk 

k=0 λ=0 

to find QN(λ) and then use the result of part (a) to find MN (s). Verify that 
this moment-generating function agrees with what you would find directly from 
Eq. (1). 

Problem 6.3 

Here we shall examine a quantum photodetection model for single-mode direct de­
tection with sub-unity quantum efficiency. Suppose that the sensitive region, A, 
of a quantum-efficiency-η photodetector is illuminated by a photon-units, positive-
frequency quantum field operator Ê(x, y, t) whose only excited, i.e., non-vacuum­
state, mode is âe−jωt/

√
AT for 0 ≤ t ≤ T where A is the area of A, as shown in 

′ Fig. 2. The output of this detector is a classical random variable N whose statistics 
coincide with those of the number operator 

N̂ ′ ≡ â
′ †â′ where â′ ≡ √

ηâ + 1 − ηâη. (3) 

In Eq. (3), âη is a photon annihilation operator that commutes with â and â†; âη is 
in its vacuum state |0〉η. 

E(x,y,t) 
i(t) 

q 
1 _ 

0 

T 
dt N’ 

η 

^ ∫ 
Figure 2: Sub-unity-quantum efficiency photon counter 

(a) Find the factorial moments { 〈â′ †kâ
′ k : k = 1, 2, 3, . . . } in terms of η and 

{ 〈â†kâk〉 : k = 1, 2, 3, . . . }. 
〉 

(b) Use the result of part (a) to relate QN ′ (λ) to QN (λ) from Eq. (2). 

(c) Use the result of part (b) to relate MN ′ (s) to MN(s) from Eq. (1). 

(d) Verify that your answer to part (c) satisfies, 

∞ ∞ � � 

sn MN ′ (s) = 
� 

e 
� 

n
k 

ηn(1 − η)k−n 〈k|ρ̂|k〉 , 
n=0 k=n 
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where 
� � 

k k! 

n 
≡

n!(k − n)!
, 

is the binomial coefficient. [Hint: Interchange the orders of summation over n 
and k and use the binomial theorem on the resulting inner sum.] 

′ (e) Use the result of part (d) to find Pr(N = n) for the quantum-efficiency-η pho­
todetector in terms of Pr(N = n), the photon counting probability distribution 
of a unity-quantum-efficiency detector, when the state of the single-mode illu­
mination field is ρ̂. 

Problem 6.4 

Here we shall continue our investigation of quantum linear transformations by treating 
the single-frequency quantum theory of the degenerate parametric amplifier (DPA), 
i.e., the Bogoliubov transformation that produces squeezed states. Let âIN be the 
annihilation operator of the frequency-ω quantum field at the input to the DPA. This 
operator has the usual commutator bracket with its adjoint, viz., [âIN, âIN

† ] = 1. The 
annihilation operator of the frequency-ω output from the DPA is, 

âOUT ≡ µâIN + νâIN
† , 

where µ and ν are complex numbers that satisfy |µ|2 − |ν|2 = 1. 

(a) Show that the DPA transformation is commutator preserving, i.e., prove that 
[âOUT, âOUT

† ] = 1. 

(b) Suppose that the input mode’s density operator is ρ̂IN = |αIN〉ININ〈αIN|, where 
αIN〉IN is a coherent state. Find the Wigner characteristic function, 

IN χρIN (ζ∗, ζ) ≡ tr ρ̂INe −ζ∗âIN+ζâ
† 

,W 

of ρ̂IN. 

(c) Find χρOUT (ζ∗, ζ), the Wigner characteristic function of the output mode âOUT W 

by: (1) using the DPA’s input-output relation to write the exponential term in 
the output-mode’s characteristic function in terms of the input-mode’s annihi­
lation and creation operators, and (2) taking the expectation of the resulting 
exponential term by multiplying by the input-mode density operator and taking 
the trace. 

(d) Suppose that µ and ν are real-valued and positive. Use the result of (c) to 
find the marginal probability densities for the outcome of the output-mode 
quadrature measurements, 

âOUT + âOUT 
† âOUT − âOUT 

† 

âOUT1 
≡ 

2 
and âOUT2 

≡ 
2j

. 
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