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Reading: For entanglement and measures of entanglement:

e L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge
University Press, Cambridge, 1995), Sect. 12.14.

e D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Infor-
mation (Springer Verlag, Berlin, 2000), Sects. 3.4 and 3.5.

For qubit teleportation:

e C.C. Gerry and P.L. Knight, Introductory Quantum Optics (Cambridge Uni-
versity Press, Cambridge, 2005) Sect. 11.3.

e D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Infor-
mation (Springer Verlag, Berlin, 2000), Sects. 3.3 and 3.7.

For quadrature teleportation:

e D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Infor-
mation (Springer Verlag, Berlin, 2000), Sect. 3.9.

For optimum binary hypothesis testing:

e C.W. Helstrom, Quantum Detection and Estimation Theory (Academic Press,
New York, 1976) Sects. 4.2 and 6.1.

Problem 8.1

Here we shall begin a treatment of optimum binary hypothesis testing. Suppose
that a quantum system is known to be in either state [¢)_1) or |¢), where [¢p_1) #
|t1). Let hypothesis H_; denote “state = [1)_1)” and hypothesis H; denote “state =
|11).” Assume that these two hypotheses are equally likely, i.e., before we make any
measurement on the quantum system, it has probability 1/2 of being in state |¢)_1)
and probability 1/2 of being in state [¢;). Our task is to make a measurement on
this system to determine—with the lowest probability of being wrong—whether the
system’s state was [t)_1) or |¢) before we make our measurement. (The projection
postulate implies that the system’s state will likely be changed by our having made
a measurement. )



Because we know the system can only be in [¢)_1) or |¢4) we can—and we will—
limit all our analysis in the reduced Hilbert space,

H = span(|y_1), [11)),

i.e., to the Hilbert space of kets of the form

V) = alv-1) + Bli),

where o and (3 are complex numbers.
Define a decision operator,

lA) = |d1><d1| - |d—1><d—1|>

where {|d_1),|d;)} are a pair of orthonormal kets on the reduced Hilbert space H.
Clearly, D is an observable on H. Suppose that we measure D on the quantum system
under study. If the outcome of this measurement is —1, we will say that the state
before the measurement was [1)_1). If the outcome of this measurement in 1, we will
say that the state before the measurement was [i1).

(a) Find the conditional probabilities,
Pr(say “state was [¢_1)” | state was [¢)) = Pr(D=—1]ir)),
Pr(say “state was [1)” | state was [¢p_1)) = Pr(D=1]|v_1)).
and the unconditional error probability,
Pr(e) = Pr(state was [¢_))Pr(D =1 [¢_4))

+ Pr(state was |1p1)) Pr(D = —1| [41)).
(b) Suppose that (1_1|¢1) = 0, so that {|i)_1),[11)} is an orthonormal basis for H.
Find the measurement eigenkets {|d_1),|d;)} that minimize your error prob-
ability expression from (a). [The error probability of your optimum decision

operator for this case shows why orthonormal kets are said to be “distinguish-
able.”]

(c) Suppose that |¢p_;) and |¢) are normalized (unit length), but not orthogonal.
In particular, let {|z),|y)} be an orthonormal basis for H, and assume that,

|th-1) = cos(0)|x) —sin(f)[y) and |¢1) = cos(f)|z) + sin(6)]y),
where 0 < § < 7/4. Using the expansions,

|[d-1) = cos(@)|z) —sin(¢)]y) and |dy) = sin(¢)|x) + cos(¢)]y),



where 0 < ¢ < 27, and your Pr(e) result from (a) find the ¢ value—hence the
{|d_1),|d1)}—that minimizes the error probability for this case.

[Hint: By assiduous use of trig identities, you should be able to reduce the error
probability expression to the following form:

Pr(e) = %[1 — sin(2¢) sin(26))],

which is easily minimized over ¢.]

Problem 8.2

Here we shall continue our treatment of optimum binary hypothesis testing. Suppose
that the quantum system considered in Problem 8.1 is a single-mode optical field with
annihilation operator a.

(a)

Let [¢p_1) = |n_1) and |¢1) = |n1) be photon number states with n_; # n;.
Show that making the number operator measurement, N = a'a, on the single-
mode field allows a zero-error-probability decision to be made as to whether the
state before the measurement was |n_;) or |n;).

Let [¢p_1) = |a_1) and [1)1) = |a1) be coherent states with (a_1|a;) = cos(260)
for a 6 value satisfying 0 < # < 7/4. Find the error probability achieved by
the minimum-error-probability decision operator for deciding whether the state
before the measurement was |«_1) or |ay).

Evaluate your error probability from (b) when on-off keying (OOK) is used:
la_1) = |0) and |a;) = [V/N), i.e., when the two coherent states we are trying
to distinguish are the vacuum state, and a coherent state with average photon
number N. Compare this error probability with what is achieved when we
make the N measurement and say “state was |0)” when this measurement yields
outcome 0 and say “state was |[v/N)” when this measurement yields a non-zero
outcome.

[Hint: First find the conditional error probabilities,
Pr(say “state was |0)” | state was |V N)),

and
Pr(say “state was |[v/N)” | state was [v/0) ).

and then find the unconditional error probability using these intermediate re-
sults.]

Evaluate your error probability from (b) when binary phase-shift keying (BPSK)
is used: |a_;) = |—+v/N) and |a;) = |v/N). Compare this error probability with



what is achieved when we make the a; = Re(a) measurement and say “state
was | —+v/N)” when this measurement yields a negative outcome and say “state
was |\/N )7 when this measurement yields a non-negative outcome. Express
your answer for the homodyne receiver in terms of

0o —t2/2
Q(:);)E/ dt eJ%’

i.e., the probability that a zero-mean, unity-variance Gaussian random variable
exceeds x.

[Hint: First find the conditional error probabilities,
Pr(say “state was | — v/N)” | state was |v/N) ),

and
Pr(say “state was |v/N)” | state was | — v N) ).

and then find the unconditional error probability using these intermediate re-
sults.]

Problem 8.3

Here we shall consider a different variant of the binary hypothesis testing problem.
Suppose, as in Problem 8.1, that a quantum system is known to be in either state
|t_1) or |¢1), where |p_1) # |[11). Let hypothesis H_; denote “state = |¢)_1)” and
hypothesis H; denote “state = [¢1).” Assume that these two hypotheses are equally
likely, i.e., before we make any measurement on the quantum system, it has probability
1/2 of being in state [¢)_;) and probability 1/2 of being in state [¢1). Our task is
still to make a measurement on this system to determine whether the system’s state
was [1_1) or |¢) before we make our measurement. Now, however, we do not want
to make any mistakes, i.e., when we say “state was |¢_1)” we must be correct, and
when we say “state was |11)” we must also be correct. This does not require that we
limit ourselves to orthonormal states |¢)_;) and [¢), because we will also allow our
measurement outcome to be “error,” meaning it cannot reliably determine whether
the state was [1)_1) or [11). In other words, we will require a measurement on the
two-dimensional reduced Hilbert space H that has three possible outcomes: “state
was |¢_1),” “state was |¢4),” and “error.”

Assume that,

Y1) = cos(0)[x) —sin(0)[y) and [¢) = cos(0)|z) + sin(0)]y),

where 0 < 6 < 7/4, as in Problem 8.1(c), where |z) and |y) are an orthonormal basis
for H. Define a pair of kets,

[€-1) = —sin(0)|z) +cos(0)]y) and  [&) = —sin(f)|x) — cos(6)y)



and a set of operators {fI_l, I, ﬂe},

Iy = al§1)(€al,
I = al&)&l
. = bla)(zl,

where a and b are real-valued constants.

(a)

(c)

(d)

Find a and b such that {ﬁ_l,ﬂl,ﬂe} is a positive operator-valued measure
(POVM) on the reduced Hilbert space H, i.e., find the values of a and b for
which

A

f[j =1I;, forj=—11¢,
(IIL[) >0, for j=—1,1,eand all [¢),

and R A R A
oy + 11 + 1l = Iy,

where 1, is the identity operator on H.

When we measure {ﬂ_l, 1L, f[e}—with a and b as found in (a), so that these
operators form a POVM and hence represent a measurement—and the state of
the quantum system is [¢)) € H, the outcome will be either —1, 1, or e, with
the following probabilities:

Pr(outcome = —1) = (¢[I1_1]e)),
Pr(outcome = 1) = (¢|ﬂ1|¢>,
Pr(outcome = e) = (1)|IL]t)).

Suppose that we measure this POVM on our quantum system. If the mea-
surement outcome is —1, we will say “state was [¢)_1).” If the measurement
outcome is 1, we will say “state was [¢1).” If the measurement outcome is e,
we will say “error.” Show that this decision procedure will never be incorrect
when it says “state was [t)_1),” or when it says “state was |14).”

For the POVM decision rule from (b), find the unconditional error probability,
Pr(outcome = “error”).

Evaluate your error probability from (c) when [¢_;) = | — v/N) and [¢1) =
|V/N), for | & v/N) being coherent states.



