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Reading: For entanglement and measures of entanglement: 

•	 L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge 
University Press, Cambridge, 1995), Sect. 12.14. 

•	 D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Infor­

mation (Springer Verlag, Berlin, 2000), Sects. 3.4 and 3.5. 

For qubit teleportation: 

•	 C.C. Gerry and P.L. Knight, Introductory Quantum Optics (Cambridge Uni­
versity Press, Cambridge, 2005) Sect. 11.3. 

•	 D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Infor­

mation (Springer Verlag, Berlin, 2000), Sects. 3.3 and 3.7. 

For quadrature teleportation: 

•	 D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Infor­

mation (Springer Verlag, Berlin, 2000), Sect. 3.9. 

For optimum binary hypothesis testing: 

•	 C.W. Helstrom, Quantum Detection and Estimation Theory (Academic Press, 
New York, 1976) Sects. 4.2 and 6.1. 

Problem 8.1 

Here we shall begin a treatment of optimum binary hypothesis testing. Suppose 
that a quantum system is known to be in either state |ψ−1� or |ψ1�, where |ψ−1� =�
|ψ1�. Let hypothesis H−1 denote “state = |ψ−1�” and hypothesis H1 denote “state = 
|ψ1�.” Assume that these two hypotheses are equally likely, i.e., before we make any 
measurement on the quantum system, it has probability 1/2 of being in state |ψ−1�
and probability 1/2 of being in state |ψ1�. Our task is to make a measurement on 
this system to determine—with the lowest probability of being wrong—whether the 
system’s state was |ψ−1� or |ψ1� before we make our measurement. (The projection 
postulate implies that the system’s state will likely be changed by our having made 
a measurement.) 
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Because we know the system can only be in |ψ−1� or |ψ1� we can—and we will— 
limit all our analysis in the reduced Hilbert space, 

H ≡ span(|ψ−1�, |ψ1�), 

i.e., to the Hilbert space of kets of the form 

|ψ� = α|ψ−1� + β|ψ1�, 

where α and β are complex numbers. 
Define a decision operator, 

,D̂ ≡ |d1��d1| − |d−1��d−1|

where { d−1�, d1�} are a pair of orthonormal kets on the reduced Hilbert space H.| |
ˆClearly, D̂ is an observable on H. Suppose that we measure D on the quantum system 

under study. If the outcome of this measurement is −1, we will say that the state 
before the measurement was |ψ−1�. If the outcome of this measurement in 1, we will 
say that the state before the measurement was |ψ1�. 

(a) Find the conditional probabilities,


Pr( say “state was |ψ−1�” | state was |ψ1� ) = Pr(D̂ = −1 | |ψ1�),


Pr( say “state was |ψ1�” | state was |ψ−1� ) = Pr(D̂ = 1 | |ψ−1�).


and the unconditional error probability,


Pr(e) ≡ Pr(state was |ψ−1�) Pr(D̂ = 1 | |ψ−1�)


+ Pr(state was |ψ1�) Pr(D̂ = −1 | |ψ1�). 

(b) Suppose that �ψ−1|ψ1� = 0, so that {|ψ−1�, |ψ1�} is an orthonormal basis for H. 
Find the measurement eigenkets {|d−1�, |d1�} that minimize your error prob­
ability expression from (a). [The error probability of your optimum decision 
operator for this case shows why orthonormal kets are said to be “distinguish­
able.”] 

(c) Suppose that |ψ−1� and |ψ1� are normalized (unit length), but not orthogonal. 
In particular, let {|x�, |y�} be an orthonormal basis for H, and assume that, 

|ψ−1� = cos(θ)|x� − sin(θ)|y� and |ψ1� = cos(θ)|x� + sin(θ)|y�, 

where 0 < θ < π/4. Using the expansions, 

|d−1� = cos(φ)|x� − sin(φ)|y� and |d1� = sin(φ)|x� + cos(φ)|y�, 
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where 0 ≤ φ < 2π, and your Pr(e) result from (a) find the φ value—hence the 
{|d−1�, |d1�}—that minimizes the error probability for this case. 

[Hint: By assiduous use of trig identities, you should be able to reduce the error 
probability expression to the following form: 

1 
Pr(e) = [1 − sin(2φ) sin(2θ)], 

which is easily minimized over φ.] 

Problem 8.2 

Here we shall continue our treatment of optimum binary hypothesis testing. Suppose 
that the quantum system considered in Problem 8.1 is a single-mode optical field with 
annihilation operator â. 

(a) Let |ψ−1� = |n−1� and |ψ1� = |n1� be photon number states with n−1 =� n1. 
Show that making the number operator measurement, N̂ ≡ â†â, on the single-
mode field allows a zero-error-probability decision to be made as to whether the 
state before the measurement was |n−1� or |n1�. 

(b) Let |ψ−1� = |α−1� and |ψ1� = |α1� be coherent states with �α−1|α1� = cos(2θ) 
for a θ value satisfying 0 < θ < π/4. Find the error probability achieved by 
the minimum-error-probability decision operator for deciding whether the state 
before the measurement was |α−1� or |α1�. 

(c) Evaluate your error probability from (b) when on-off keying (OOK) is used: 
|α−1� = |0� and |α1� = |

√
N�, i.e., when the two coherent states we are trying 

to distinguish are the vacuum state, and a coherent state with average photon 
number N . Compare this error probability with what is achieved when we 
make the N̂ measurement and say “state was |0�” when this measurement yields 
outcome 0 and say “state was |

√
N�” when this measurement yields a non-zero 

outcome. 

[Hint: First find the conditional error probabilities, 

Pr( say “state was |0�” | state was |
√
N� ), 

and

Pr( say “state was |

√
N�” | state was |

√
0� ).


and then find the unconditional error probability using these intermediate re­
sults.] 

(d) Evaluate your error probability from (b) when binary phase-shift keying (BPSK) 
is used: |α−1� = |−

√
N� and |α1� = |

√
N�. Compare this error probability with 
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what is achieved when we make the â1 = Re(â) measurement and say “state 
was |−

√
N�” when this measurement yields a negative outcome and say “state 

was |
√
N�” when this measurement yields a non-negative outcome. Express 

your answer for the homodyne receiver in terms of 

∞ −t2/2e
Q(x) ≡

�
dt , 

x 

√
2π 

i.e., the probability that a zero-mean, unity-variance Gaussian random variable 
exceeds x. 

[Hint: First find the conditional error probabilities, 

Pr( say “state was | −
√
N�” | state was |

√
N� ), 

and

Pr( say “state was state was
|

√
N�” | | −

√
N� ). 

and then find the unconditional error probability using these intermediate re­
sults.] 

Problem 8.3 

Here we shall consider a different variant of the binary hypothesis testing problem. 
Suppose, as in Problem 8.1, that a quantum system is known to be in either state 

or ψ1�, where = Let hypothesis H−1 denote “state = and |ψ−1� | |ψ−1� � |ψ1�. |ψ−1�” 
hypothesis H1 denote “state = |ψ1�.” Assume that these two hypotheses are equally 
likely, i.e., before we make any measurement on the quantum system, it has probability 
1/2 of being in state |ψ−1� and probability 1/2 of being in state |ψ1�. Our task is 
still to make a measurement on this system to determine whether the system’s state 
was |ψ−1� or |ψ1� before we make our measurement. Now, however, we do not want 
to make any mistakes, i.e., when we say “state was |ψ−1�” we must be correct, and 
when we say “state was |ψ1�” we must also be correct. This does not require that we 
limit ourselves to orthonormal states |ψ−1� and |ψ1�, because we will also allow our 
measurement outcome to be “error,” meaning it cannot reliably determine whether 
the state was |ψ−1� or |ψ1�. In other words, we will require a measurement on the 
two-dimensional reduced Hilbert space H that has three possible outcomes: “state 
was |ψ−1�,” “state was |ψ1�,” and “error.” 

Assume that, 

|ψ−1� = cos(θ)|x� − sin(θ)|y� and |ψ1� = cos(θ)|x� + sin(θ)|y�, 

where 0 < θ < π/4, as in Problem 8.1(c), where |x� and |y� are an orthonormal basis 
for H. Define a pair of kets, 

|ξ−1� = − sin(θ)|x� + cos(θ)|y� and |ξ1� = − sin(θ)|x� − cos(θ)|y� 
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and a set of operators {Π̂−1, Π̂1, Π̂e}, 

Π̂−1 ≡ a|ξ−1��ξ−1|, 

Π̂1 ≡ a|ξ1��ξ1|, 

Π̂e ≡ b|x��x|, 

where a and b are real-valued constants. 

(a) Find a and b such that {Π̂−1, Π̂1, Π̂e} is a positive operator-valued measure 
(POVM) on the reduced Hilbert space H, i.e., find the values of a and b for 
which 

Π̂† 
j = Π̂j , for j = −1, 1, e, 

�ψ|Π̂j|ψ� ≥ 0, for j = −1, 1, e and all |ψ�,

and


Π̂−1 + Π̂1 + Π̂e = Î2, 

where Î2 is the identity operator on H. 

(b) When we measure {Π̂−1, Π̂1, Π̂e}—with a and b as found in (a), so that these 
operators form a POVM and hence represent a measurement—and the state of 
the quantum system is |ψ� ∈ H, the outcome will be either −1, 1, or e, with 
the following probabilities: 

Pr(outcome = −1) = �ψ|Π̂−1|ψ�, 

Pr(outcome = 1) = �ψ|Π̂1|ψ�, 

Pr(outcome = e) = �ψ|Π̂e|ψ�. 

Suppose that we measure this POVM on our quantum system. If the mea­
surement outcome is −1, we will say “state was |ψ−1�.” If the measurement 
outcome is 1, we will say “state was |ψ1�.” If the measurement outcome is e, 
we will say “error.” Show that this decision procedure will never be incorrect 
when it says “state was |ψ−1�,” or when it says “state was |ψ1�.” 

(c) For the POVM decision rule from (b), find the unconditional error probability, 
Pr(outcome = “error”). 

(d) Evaluate your error probability from (c) when ψ−1� = −
√
N� and ψ1� = 

|
√
N�, for | ±

√
N� being coherent states. 

| | |
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