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6.453 Quantum Optical Communication — Lecture 1

= Handouts

= Syllabus, schedule/policy, probability chapter, lecture notes, slides,
problem set 1

= Sign-up on class list

= |Introductory Remarks
= Subject organization
= Subject outline

= Technical Overview
= Optical eavesdropping tap — quadrature-noise squeezing
= Action at a distance — polarization entanglement
= Long-distance quantum state transmission — qubit teleportation
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Optical Homodyne Detection — Semiclassical

Signal is weak, LO is strong
Balanced Homodyne Receiver = Energy conservation
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Optical Waveguide Tap — Semiclassical

= Coupleris a beam splitter

Fused Fiber Coupler as,.., = VTa, +V1-Tay,
atout - v 1 - j_,af“in - \/fa'tin
s, - = Tap input is zero
signal input signal output

= Homodyne SNR at signal input

tap input tap output .
ag,, P afout = Homodyne SNR at signal output

SNR, .. = 4T |as,, |2

= Homodyne SNR at tap output
SNR,., = 4(1 — T)|as,,|?
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Quantum Homodyne Detection and Waveguide Tap

Balanced Homodyne Receiver
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Fused Fiber Coupler
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Billiard-Ball Photons and the Poincaré Sphere

= Polarization of +z-going photon:

= Poincaré sphere representation
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= +r,, polarization measurement
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Classical Correlation vs. Quantum Entanglement

= Classical-Correlated, Randomly-Polarized Photons
= Source produces &1 photon pair with r completely random
Pr(photon 1 = +r,,) = Pr(photon 2 = Fr,,,) = 1/2

= Conditional probability given photon 1 is r,,, instead of —r,,,
Pr(photon 2 = —r,, | photon 1 =r,, ) =2/3

= Maximally-Entangled Photons
= Source produces 1 photon pair with r completely random
Pr(photon 1 = +r,,) = Pr(photon 2 = Fr,,,) = 1/2

= Conditional probability given photon 1 is r,,, instead of —r,,
Pr(photon 2 = —r,, | photon 1 =r,, ) =1
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Properties of Single-Photon Polarization States

= Polarization cannot be perfectly measured —

E
ﬂ

" = « Polarization cannot be perfectly cloned

= Photons can be lost in propagation:
Pr(photon loss in 50 km of low-loss fiber) = 0.9
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Photon Polarization States Can Be Teleported

Entanglement
Source
Alice Bob
Step 1
Message Receiver Teleported

Message

g ¢

Classical Communication State
Joint Measurement P | Transformation
Step 3
Step 2 Step 4
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The Road Ahead: Problem Set 1, Lectures 2 and 3

= Problem Set 1

= Reviews of essential probability theory and linear algebra

= |Lectures 2 and 3:

Fundamentals of Dirac-Notation Quantum Mechanics
= Quantum systems
= States as ket vectors
= State evolution via Schrodinger’s equation
= Quantum measurements — observables
= Schrodinger picture versus Heisenberg picture
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