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Optical heterodyne detection and the â POVM


Introduction 

We are close to completing our development of single-mode photodetection—in both 
its semiclassical and quantum forms—with the principal remaining task being the 
treatment of optical heterodyne detection. Heterodyne detection is the physical re­
alization of the â positive operator-valued measurement. Moreover, its analysis will 
connect with the notion that POVMs that are not observables can be regarded as ob­
servables on an enlarged—signal ⊗ ancilla—state space. Before turning to heterodyne 
detection, we shall briefly reprise what was done last time, i.e., the single-mode semi­
classical and quantum theories of direct detection and balanced homodyne detection 
with ideal photodetectors. 

Reprise of Direct Detection 

Slide 3 shows our quantum description of a single-mode field. It is a positive-frequency 
field operator, Êz(x, y, t), that has only one spatio-temporal mode which is not in 
its vacuum state. Here we have taken that excited mode to be a monochromatic 
+z-going plane-wave pulse over the detector’s photosensitive region A during the 
detection interval 0 ≤ t ≤ T . The “other modes” must be included, for a full quan­
tum field description, because their vacuum states carry zero-point fluctuations that 
could, potentially, influence the photodetection statistics. Note that the â operator 
appearing in the excited Êz(x, y, t) mode is a photon annihilation operator, i.e., it has 
the canonical commutator [â, â†] = 1 with its adjoint, the photon creation operator. 
Later this semester, when we cover continuous-time photodetection, we will see that 
all the other modes on Slide 2 are also characterized by photon annihilation operators, 
so that the entire quantized electromagnetic field comprises an infinite collection of 
quantum harmonic oscillators. 

The quantum theory of photodetection for the single-mode field dictates that the 
final-count variable, � T1 

N ≡ du i(u), (1) 
q 0 
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takes on non-negative integer values, n = 0, 1, 2, . . . , with probabilities 

Pr( N = n | state = |ψ� ) = |�n|ψ�|2 , (2) 

when the excited mode is in the state |ψ�, where {|n�} are the photon-number states, 
i.e., the eigenkets of N̂ ≡ â†â. Inasmuch as our Axiom 3 tells us that these are the 
statistics of the N̂ observable, we can say that single-mode direct detection with an 
ideal photodetector realizes the N̂ measurement. Specifically, all statistics associated 
with the classical outcome N equal the corresponding statistics of the observable N̂ . 
For example, �N� = �N̂�, �ΔN2� = �ΔN̂2�, and �ejvN � = �ejv N̂�, etc. To denote this 
equivalence of a classical random variable to measurement of a quantum operator we 
write N N̂ .↔

Why don’t the “other modes” on Slide 3 contribute to the statistics of N? The 
full description of Êz(x, y, t) on (x, y) ∈ A and 0 ≤ t ≤ T is as follows: 

Êz(x, y, t) = âkφk(x, y, t), (3) 
k 

where {φk(x, y, t)} is a complete orthonormal set of functions on (x, y, t) = A× [0, T ], 
i.e., � � T 

dx dy dt φ∗ 
j (x, y, t)φk(x, y, t) = δjk, (4) 

A 0 

and � 
φ∗ 

k(x, y, t)φk(x
�, y�, t�) = δ(x − x�)δ(y − y�)δ(t − t�), (5) 

k 

for (x, y), (x�, y�) ∈ A and t, t� ∈ [0, T ]. So, taking φ1(x, y, t) = e−jωt/
√
AT , we can say 

that our single-mode field from Slide 3 has its k = 1 mode excited with the rest of its 
modes being in their vacuum states. The continuous time theory of photodetection— 
which will see later this semester—teaches that the final count is equivalent, in the 
sense described in the previous paragraph, to the total photon number operator, � � T � 

N̂T ≡ dx dy dt Êz
†(x, y, t)Êz(x, y, t) = âk

† âk, (6) 
kA 0 

where the last equality follows from Parseval’s theorem for the (operator-valued) 
generalized Fourier series. Because { N̂k ≡ â† âk : k = 2, 3, . . . , } are all vacuum-k 
state modes, their measurements all yield zero-valued outcomes with probability one. 
Hence only the excited mode âe−jωt/

√
AT from Slide 3 contributes to the final count 

variable in the direct detection setup shown on Slide 4. 
Now let us see how to connect the quantum theory of single-mode direct detection 

to the semiclassical view of the same configuration. Today, rather than specify the 
semiclassical case and compare it to the quantum formulation, let us choose to put 
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the single excited mode of the quantum field into the coherent state |α� and see what 
transpires. In this case, (2) becomes the Poisson distribution with mean |α|2, viz., 

Pr( N = n | state = |α� ) = 
|α|2n

n

e

! 

−|α|2 

, for n = 0, 1, 2, . . . (7) 

Suppose, however, that the single-mode field is not in a pure state |α�, but is in some 
classically random mixture of such states, i.e., there is a classical probability density 
function p(α) such that the density operator for the â mode is1 

ρ̂ = d2α p(α)|α��α|. (8) 

Standard results from probability theory then tell us that 

Pr(N = n) = d2α p(α) Pr( N = n | state = |α� ) (9) 

= d2α p(α)
|α|2ne−|α|

2 

, for n = 0, 1, 2, . . . (10) 
n! 

This result is the quantum origin of the semiclassical theory of single-mode direct 
detection. Say that the detector is illuminated by the single-mode classical field, 

ae−jωt 

Ez(x, y, t) = √
AT 

, for (x, y) ∈ A and 0 ≤ t ≤ T , (11) 

where a is a complex-valued random variable. If we take 

Pr( N = n | a = α ) = 
|α|2n

n

e

! 

−|α|2 

, for n = 0, 1, 2, . . . , (12) 

and let a have the joint probability density p(α) for α1 = Re(α) and α2 = Im(α), 
then we get a semiclassical theory for {Pr(N = n)} that coincides with the quantum 
theory for this probability mass function for all classical probability density functions 
p(α). 

So, within the regime of density operators that are classically-random mixtures 
of coherent states we have that the quantum and semiclassical theories of single-
mode direct detection are quantitatively indistinguishable. However, even in this 
regime the two theories are qualitatively different, in that the quantum theory ascribes 
the noise in single-mode direct detection of a pure state to the quantum natures of 
the light beam and the operator describing the measurement that is being made, 
but the semiclassical theory ascribes the noise in single-mode direct detection of a 
deterministic field to the shot noise associated with the discreteness of the electron 

1See Problem Set 3 for more about density operators and mixed quantum states. 
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charge in the photodetector. The most stark contrast between the quantum and 
semiclassical views of single-mode direct detection then occurs when the illumination 
is in a non-vacuum photon number state |m�. Quantum photodetection tells us 
that N = m will occur with probability one, but the semiclassical theory can never 
predict �ΔN2� < �N�, so its Poisson distribution for deterministic illumination cannot 
account for ideal direct detection of a non-vacuum photon number state. 

Reprise of Balanced Homodyne Detection 

Slides 5 through 7 review what was done last time for single-mode balanced homodyne 
detection. Let’s take another look at this setup starting, as we just did for direct 
detection, from the quantum theory. A single-mode signal field and a single-mode 
local oscillator field are combined on a 50/50 beam splitter after which they illuminate 
a pair of ideal photodetectors. From our direct detection results, we know that 
N± ↔ N̂±, i.e., the final counts from these two detectors are equivalent to the photon 
number-operator measurements2 

N̂ a† â±, where â
âS ± âLO 

. (13) ± ≡ ˆ± ± ≡ √
2 

It follows that the classical random variable output, αθ, from the balanced homodyne 
ˆsetup obeys αθ ↔ limNLO→∞(N̂+ − N−)/2

√
NLO, which ultimately becomes αθ ↔

Re(âS e
−jθ), i.e., the θ-quadrature of the signal field’s annihilation operator âS . Thus, 

if 
âθ|αθ�θ = αθ|αθ�θ, for −∞ < αθ < ∞ (14) 

defines the complete orthonormal (in the delta-function sense) eigenkets of âθ ≡
Re(âS e

−jθ), then we know (from Axiom 3a) that the outcome of single-mode balanced 
homodyne detection will be a continuous random variable αθ with probability density 
function 

p( αθ | state = |ψ� ) = |θ�αθ|ψ�|2 , for −∞ < αθ < ∞, (15) 

when the signal mode is in the state |ψ�. 
Once again we connect the quantum theory to the semiclassical treatment by 

assuming that the excited signal mode is in the coherent state |β�. In this case we 
get3 

e−2(αθ −βθ )
2 

p( αθ | state = |β� ) = � 
π/2 

, where βθ ≡ Re(βe−jθ), (16) 

2The discussion of “other modes” from our direct detection treatment shows why only a single 
mode of the signal and a single mode of the local oscillator contribute to the statistics of these final 
counts. 

3This result follows from our work in Lecture 7 on quantum characteristic functions. In particular, 
we have that Maθ (jv) ≡ �ejvâθ � = χW (ζ∗, ζ)|ζ=jvejθ /2 = ejvβθ −v 2/8, where the last equality uses the 
fact that the signal field is in the coherent state |β�. 

4




� 

� 

i.e., αθ is a variance-1/4 Gaussian random variable whose mean value is the θ­
quadrature of the coherent state’s eigenvalue. Now, if the single-mode field is in 
a classical mixture of coherent states specified by the density operator, 

ρ̂ = d2β p(β)|β��β|, (17) 

where p(β) is a classical probability density for a pair of real-valued random variables, 
β1 = Re(β) and β2 = Im(β), we find that the unconditional statistics for the balanced 
homodyne detector’s output are given by the probability density function 

e−2(αθ−βθ )
2 

p(αθ) = d2β p(β) � , for −∞ < αθ < ∞. (18) 
π/2 

This result is the quantum origin of the semiclassical theory of single-mode balanced 
homodyne detection. Say that the 50/50 beam splitter is illuminated by single-mode 
classical fields, 

aS e
−jωt aLOe

−jωt 

ES(x, y, t) = and ELO(x, y, t) = , (19) √
AT 

√
AT 

where aS is a complex-valued random variable and aLO = 
√
NLO e

jθ with NLO →∞. 
Starting from the Poisson distributions 

Pr( N± = n± | a± = α± ) = 
|α±|2n

n

± 

±

e

! 

−|α±|2 

, for n± = 0, 1, 2, . . . , (20) 

and the statistical independence of the shot noises of physically separate detectors, we 
can assign the joint probability density p(α) to α1 = Re(α) and α2 = Im(α), and use 
the Central Limit Theorem to get a semiclassical theory for p(αθ) that coincides with 
the quantum theory for this probability density function for all classical probability 
density functions p(α) and all phase shifts θ. 

Thus, within the regime of density operators that are classically-random mixtures 
of coherent states we have that the quantum and semiclassical theories of single-
mode balanced homodyne detection are quantitatively indistinguishable. However, 
even in this regime the two theories are qualitatively different, in that the quantum 
theory ascribes the noise in single-mode homodyne detection of a pure state to the 
quantum natures of the light beam and the operator describing the measurement 
that is being made, but the semiclassical theory ascribes the noise in single-mode 
homodyne detection of a deterministic field to the shot noise of the strong local 
oscillator. As a result, if we illuminate the balanced homodyne detector with a 
squeezed-state single-mode signal field, |β; µ, ν� with µ, ν > 0, and measure the âS1 = 
âθ=0 quadrature, then the quantum theory leads to a measurement variance of (µ −
ν)2/4 < 1/4 but semiclassical photodetection can never predict �Δαθ 

2� < 1/4. 
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Balanced Heterodyne Detection 

We are now ready for the last of the three basic configurations for single-mode pho­
todetection: balanced heterodyne detection, as shown on Slide 8. Here, a single-mode 
signal field of frequency ω is combined, on a 50/50 beam splitter, with a strong local 
oscillator field of frequency ω − ωIF, where ωIF is an intermediate frequency (IF), i.e., 
a radio or microwave frequency low enough to be handled by the post-photodetection 
electronics. Because photodetectors are essentially square-law devices, we know that 
the photocurrents i+(t) and i−(t) will contain signal × local oscillator beats at fre­
quency ωIF. A frequency-ωIF waveform, x(t), on the time interval 0 ≤ t ≤ T can be 
written in quadrature form as 

x(t) = xc cos(ωIFt) + xs sin(ωIFt), (21) 

where � T � T2 2 
xc = dt x(t) cos(ωIFt) and xs = dt x(t) sin(ωIFt). (22) 

T 0 T 0 

Thus the post-photodetection processing shown in Slide 8 extracts these quadrature 
coefficients from the normalized photocurrent difference, [i+(t) − i−(t)]/q

√
NLO. 

For the semiclassical treatment of balanced heterodyne detection, we take the 
signal and local oscillator fields to be 

aS e
−jωt aLOe

−j(ω−ωIF)t 

ES (x, y, t) = and ELO(x, y, t) = , (23) √
AT 

√
AT 

where aS is a (deterministic) complex number and aLO = 
√
NLO with NLO → ∞. 

Then, we can find the mean photocurrents from 

�i±(t)� = q dx dy |E±(x, y, t)|2 =
2

q

T 
|aSe

−jωt ± aLOe
−j(ω−ωIF)t|2 (24) 

A 

=
2

q

T 
[|aS |2 + |aLO|2 ± 2Re(aS a

∗ 
LOe

−jωIFt)], (25) 

where we have used the continuous-time theory of semiclassical photodetection to 
obtain the first equality. It is now easy to verify that � 2Re(aS e

−jωIFt)
lim −(t)]�/q NLO = , (26) 

TNLO→∞
�[�i+(t) − i

from which we get 
�αk� = aSk , for k = 1, 2, (27) 

where aS1 = Re(aS ) and aS2 = Im(aS ) are the quadrature components of aS . 
To complete our derivation of the semiclassical statistics of single-mode balanced 

heterodyne detection, we need to find the behavior of the noises Δαk ≡ αk −�αk�, for 
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k = 1, 2. A proper derivation of the noise behavior requires random process theory 
that is not assumed in our prerequisites and which we will not develop now. So, we 
will get by with a little handwaving. It should be clear that as we make the local 
oscillator’s strength grow without bound its shot noise will dominate the fluctuation 
behavior of the {αk}. Moreover, because the high mean-value limit of a Poisson 
random variable is Gaussian,4 you should not be surprised when you are told that, 
in semiclassical theory, the {αk} for single-mode balanced heterodyne detection are 
statistically independent variance-1/2 Gaussian random variables whose mean values 
are given by (27). 

Before turning to the quantum treatment of balanced heterodyne detection, there 
is one additional point worth making. The preceding development presumed that aS 

was deterministic, i.e., a known complex number. What happens if aS is a complex-
valued random variable with probability density function p(αS) for its real and imagi­
nary parts to be αS1 = Re(αS ) and α2 = Im(αS ), respectively? The answer is obvious. 
The known aS results become the conditional statistics of the balanced heterodyne 
measurement, i.e., 

e−|α−αS |2 

p( α | aS = αS ) = 
π

, (28) 

is the conditional probability density for the balanced heterodyne detection system’s 
output to be α given that aS = αS . The unconditional statistics are found by aver­
aging over the probability density for aS , 

p(α) = d2αS p(αS ) 
e−|α−αS |2 

. (29) 
π 

Slide 10 shows the field operators that we will need to obtain the quantum theory 
of single-mode balanced heterodyne detection. The local oscillator field operator is 
the obvious generalization of what we used for balanced homodyne detection. All 
that has changed in going from the homodyne case to the heterodyne case is that 
the frequency of the strong, coherent-state local oscillator mode has been shifted 
to be offset by the intermediate frequency from the frequency of the excited signal 
mode.5 We’ve done something more subtle, on Slide 10, in spelling out the field 
operator for the signal field. Here, in addition to the excited signal mode—governed 
by annihilation operator âS —we have explicitly called out a particular unexcited mode 
that has the same +z-going plane wave spatial characteristic as the excited signal 
and local oscillator modes, but is at a frequency that is ωIF below that of the local 
oscillator, whereas the signal mode’s frequency is ωIF above the LO frequency. This 

4A simple example of this asymptotic behavior is as follows. Suppose that N is a Poisson 
random variable with mean m, then we have that z ≡ (N − m)/

√
m is a zero-mean, variance-1 

random variable. Moreover, the characteristic function of z is Mz(jv) = MN (jv/
√

m)e−jv
√

m = 

em(ejv/
√

m −1)e−jv
√

m . In the limit m → ∞, this gives Mz (jv) → e−v 2/2, which is the characteristic 
function of a zero-mean, variance-1 Gaussian random variable. 

5We have also set the phase of the local oscillator’s coherent state eigenvalue equal to zero. 
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unexcited mode is governed by the annihilation operator âI , where I stands for image 
field Physically, the square-law nature of photodetection—which prevails in both the 
semiclassical and quantum descriptions—implies that both the signal and image fields 
beat with the local oscillator to produce terms at the intermediate frequency ωIF. 
In semiclassical theory an unexcited image field has value zero, and so contributes 
nothing to the balanced heterodyne detection system’s output. In quantum theory, 
however, an unexcited image field carries zero-point fluctuations that contribute noise 
to the balanced heterodyne detection system’s output. 

Paralleling what we did for the semiclassical version of balanced heterodyne de­
tection we use a result from continuous-time quantum photodetection to say that 
i±(t) î±(t), where6 ↔ � 

î±(t) = q dx dy Ê† (x, y, t)Ê±(x, y, t) (30) ±

A


=
2

q

T 
(âS e

−jωt + âI e
−j(ω−2ωIF)t ± âLOe

−j(ω−ωIF)t)† 

× (âS e
−jωt + âI e

−j(ω−2ωIF)t ± âLOe
−j(ω−ωIF)t) (31) 

=
2

q

T 
[ˆS ̂ a†I aI + ˆLOˆ aS ̂ I e

−j2ωIFt) ± 2Re(ˆ a†a† aS + ˆ ˆ a† aLO + 2Re(ˆ a† aS ̂ LOe
−jωIFt) 

± 2Re(âI
† âLOe

−jωIFt)]. (32) 

Next, we use this result to evaluate the operator equivalents of the balanced hetero­
dyne outputs, i.e., α̂k ↔ αk, for k = 1, 2, and find 

1 T 

α̂ α̂1 + jα̂2 = lim dt [̂i+(t) − ̂i−(t)]ejωIFt (33) ≡ 
NLO→∞ q

√
NLO 0 

= lim 
âS â

†
LO + âI

† âLO 
= âS + â†I . (34) 

NLO→∞ 
√
NLO 

Strictly speaking, our notation here has been a little cavalier. The signal, image, and 
local oscillator modes all have annihilation operators which reside on different Hilbert 
spaces, HS , HI , and HLO, respectively. Thus our final result for the quantum theory 
of single-mode balanced heterodyne detection should really be written 

α̂ = âS ⊗ ÎI + ÎS ⊗ âI
† , (35) 

where ÎS and ÎI are the identity operators on the signal mode and image mode Hilbert 
spaces. However, we will continue to use the shorter notation in what follows, with 
the implicit understanding that it is this tensor product form that is being considered. 

6In the second equality we have anticipated the effect of the post-photodetection quadrature-
component extraction, which will imply that only the âS , âI and âLO modes will contribute to the 
output of the balanced heterodyne detection system. 
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Equation (35) is exactly the commuting observables on a larger Hilbert space form 
of the âS POVM that we exhibited in the last lecture, only now we have a physical 
realization of the measurement and thus a physical locus—the image mode—for the 
ancilla that injects the extra noise into the two quadrature observations. Ordinarily, 
however, we do not bother with explicit recognition of the image mode, and we just say 
that the complex-valued classical random variable that is obtained from single-mode 
balanced heterodyne detection realizes the âS POVM. This means that all statistics 
of this complex-valued classical random variable α coincide with the corresponding 
statistics of the â operator, so we write α ˆ↔ aS . 

It is instructive to consider the case in which the signal mode is in the coher­
ent state |β�. Here we find that the classical probability density for the balanced 
heterodyne detector’s outcome is 

p( α | state = |β� ) = 
|�α|

π

β�|2 

= 
e−|α

π 

−β|2 

. (36) 

In words this means that α1 and α2 are statistically independent, variance-1/2 Gaus­
sian random variables with mean values β1 and β2, exactly as found from the semiclas­
sical theory. However, the quantum theory ascribes the noise in balanced heterodyne 
detection to the quantum noise on the signal and image modes, whereas the semiclas­
sical theory says that the noise is local oscillator shot noise. When the signal mode is 
in a classically-random mixture of coherent states, its predictions are still in perfect 
quantitative agreement with those of the semiclassical theory. But, because of the 
difference in their interpretations of where the noise comes from, there are quantum 
states whose heterodyne statistics cannot be accounted for in the semiclassical theory. 
An example is the squeezed state |β; µ, ν� with µ, ν > 0. In this case the quantum 
theory gives �Δα̂1

2� = [(µ − ν)2 + 1]/4 < 1/2, whereas the semiclassical theory can 
never have �Δα1

2� < 1/2. 

The Road Ahead 

In the next lecture we shall wrap up our discussion of single-mode photodetection 
by compiling the non-classical signatures of states that are not coherent states or 
classically-random mixtures thereof. We then return to the waveguide tap that we 
discussed in Lecture 1 and show exactly how it works. 
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