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Single-mode signatures of non-classical light, and the squeezed-state waveguide tap 

Introduction 

Today’s lecture has two purposes. First, we will summarize our results on single-mode 
semiclassical and quantum photodetection theory by focusing on the non-classical sig­
natures that can be seen in direct, homodyne, and heterodyne detection. This will 
include showing how a set of measurements on an ensemble of identically prepared 
quantum harmonic oscillators can be used to infer their state. Our second task, in 
today’s lecture, will be to revisit the squeezed-state waveguide tap that was described 
in Lecture 1. Armed with our understanding of single-mode photodetection, we will 
be able to derive the signal-to-noise ratio results that were presented in that open­
ing lecture. Furthermore, we shall take this opportunity to extend our single-mode 
photodetection theory to include photodetectors whose quantum efficiencies are less 
than unity. 

Semiclassical versus Quantum Photodetection 

Slide 3 summarizes what we have learned about semiclassical photodetection of a 
single-mode field. Here, to simplify the notation, we have suppressed the spatial de­� T
pendence that we included in last lecture, so that �ω 

0 dt |E(t)|2 is now the energy 
illuminating the photodetector’s light-sensitive region during the measurement inter­
val 0 ≤ t ≤ T . Direct detection yields a final count N that, conditioned on knowledge 
of the phasor a, is a Poisson-distributed random variable with mean |a|2 . Homo-
dyne detection gives a quadrature value αθ that, conditioned on knowledge of a, is a 
variance-1/4 Gaussian-distributed random variable with mean value aθ = Re(ae−jθ). 
Here, θ is the phase shift of the strong local oscillator relative to the signal, i.e., 
ELO(t) = 

√
NLO e

−j(ωt−θ)/
√
T for 0 ≤ t ≤ T , with NLO → ∞. Heterodyne detection 

yields a pair of quadrature values, α1 and α2, that, conditioned on knowledge of a, are 
statistically independent, variance-1/2, Gaussian-distributed random variables with 
mean values a1 = Re(a) and a2 = Im(a), respectively. 

Slide 4 summarizes what we have learned about quantum photodetection of a 
single-mode field. Here too we have simplified our notation by suppressing the spatial 
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dependence that we included last time. Thus, â is still a photon annihilation operator, 
so that �ω 

� 
0 
T 
dt Ê†(t)Ê(t) is still the observable representing the total energy (above 

the zero-point energy) illuminating the photodetector’s light-sensitive region during 
the measurement interval 0 ≤ t ≤ T . Direct detection yields a final count N that is 
equivalent to the quantum measurement of N̂ ≡ â†â, the number operator associated 
with the excited mode.1 Homodyne detection gives a quadrature value αθ that is 
equivalent to the quantum measurement of âθ = Re(âe−jθ), where θ is again the 
phase shift of the strong local oscillator relative to the signal. Heterodyne detection 
yields a pair of quadrature values, α1 and α2, such that α = α1 + jα2 is equivalent 
to the positive operator-valued measurement of â. Alternatively, we can say that α 
is equivalent to the quantum measurement of â + âI

† . Here, âI is the annihilation 
operator of the unexcited (vacuum-state) image mode âI e

−j(ω−2ωIF)t/
√
T for 0 ≤ t ≤

T . Because [â + âI
† , â† + âI ] = 0, the real and imaginary parts of â + â†I are commuting 

observables. Thus they can be measured simultaneously, and their measurements are 
equivalent to the heterodyne outputs α1 and α2, respectively, when the image mode 
is in its vacuum state. 

Non-classical Signatures in Photodetection Variances 

Three of the most important non-classical signatures—ways in which quantum pho­
todetection theory makes predictions that are impossible to reproduce from semi­
classical photodetection theory—appear in the variances of direct, homodyne, and 
heterodyne detection. Because it is very difficult, experimentally, to produce an opti­
cal field that is completely deterministic (in classical electromagnetism) or in a pure 
state (quantum mechanically) it is important for us to make these variance compar­
isons when the classical field on Slide 3 is allowed to have a be a complex-valued 
random variable whose joint probability density, for its real and imaginary parts, is 
pa(α). LIkewise, we will take the quantum field on Slide 4 to be in a mixed state 
characterized by the density operator ρ̂a for its single excited mode. We now need to 
perform a little exercise in iterated expectation before we can compare and contrast 
the semiclassical and quantum photodetection variances of direct, homodyne, and 
heterodyne detection. 

Consider semiclassical direct detection when a is a complex-valued random vari­
able with pdf pa(α). We then have that 

Pr(N = n) = d2α pa(α) Pr( N = n | a = α ) (1) 

= d2α pa(α)
|α|2ne−|α|

2 

, for n = 0, 1, 2, . . . (2) 
n! 

1Recall, from last lecture, that, in general, the final count N is equivalent to measurement of the 
total photon number observable, N̂T = 

� 
0 
T dt Ê†(t)Ê(t). When the single mode shown on Slide 4 is 

the only non-vacuum mode in the field, this reduces to N̂T = â†â. 
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From this it follows that the mean, mean-square, and variance of N are:


� � 2n 2 

�N� = 
∞

n Pr(N = n) = 
� 

d2α pa(α) 
∞

n
|α|

n

e

! 

−|α|
(3) 

n=0 n=0 

= d2α |α|2 pa(α) = �|a|2�, (4) 

� � 2n 2 

�N2� = 
∞

n 2 Pr(N = n) = 
� 

d2α pa(α) 
∞

n 2 |α| e−|α|
(5) 

n! 
n=0 n=0 

= d2α (|α|2 + |α|4)pa(α) = �|a|2� + �|a|4� = �N� + �|a|4�, (6) 

and 
�ΔN2� = �N2� − �N�2 = �N� + (�|a|4� − �|a|2�2) = �N� + var(|a|2). (7) 

Now consider semiclassical homodyne detection when a is a complex-valued ran­
dom variable with pdf pa(α). In this case, because αθ is Gaussian with mean aθ and 
variance 1/4 when aθ is known, we find the following results for the mean, mean-
square, and variance of αθ: 

�αθ� = d2β pa(β)βθ = �aθ� (8) 

�α2 
θ� = d2β pa(β)(β2 + 1/4) = �aθ

2� + 1/4 (9) θ 

�Δα2 
θ� = �αθ

2� − �αθ�2 = �Δaθ
2� + 1/4. (10) 

Finally, consider semiclassical heterodyne detection when a is a complex-valued 
random variable with pdf pa(α). Here, using the conditional statistics given earlier, 
the mean, mean-square, and variance of the quadratures, αk for k = 1, 2, are found 
to be: 

�αk� = d2β pa(β)βk = �ak� (11) 

�αk
2� = d2β pa(β)(β2 + 1/2) = �ak

2� + 1/2 (12) k 

�Δαk
2� = �αk

2� − �αk�2 = �Δak
2� + 1/2. (13) 

The preceding semiclassical variance results are ready for comparison with those 
obtained from the quantum theory. In particular, for direct detection we know that 
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quantum photodetection gives2 

�ΔN2� = �ΔN̂2� = tr(ρ̂aΔN̂
2), (14) 

where Δ N̂ ≡ N̂ − � N̂� = N̂ − tr(ρ̂aN̂). Similarly, for homodyne detection, quantum 
photodetection implies that 

�Δαθ
2� = �Δâθ

2� = tr(ρ̂aΔâ 2), (15) θ

where Δâθ ≡ âθ − �âθ� = âθ − tr(ρ̂aâθ). Finally, for heterodyne detection, quantum 
photodetection theory gives 

�Δα2 
k� = �Δâ 2 

k� + �Δâ 2 
Ik 
� = tr(ρ̂aΔâ 2 

k) + 1/4, for k = 1, 2, (16) 

where Δâk ≡ âk − �âk� = âk − tr(ρ̂aâk), and ΔâIk ≡ âIk − �âIk � = âIk . 
Our semiclassical and quantum variance results are summarized on Slide 5, where, 

for brevity, we have only shown the first quadrature results for homodyne and het­
erodyne detection. It is apparent from our variance results that semiclassical theory 
has lower bounds that can be broken within the quantum theory. Thus, for direct 
detection, because var(|a|2) ≥ 0, we know that semiclassical theory can only explain 
cases in which �ΔN2� ≥ �N�, i.e., the photocount variance is at least equal to the 
mean photocount. Because �ΔN2� = �N� is a property of the Poisson distribution 
that characterizes semiclassical direct detection when a is deterministic, we say that 
�ΔN2� < �N� represents a sub-Poissonian distribution. A sub-Poissonian distribu­
tion for photon counting is therefore a signature of non-classical light, i.e., a quantum 
state whose quantum photodetection statistics cannot be matched by a semiclassical 
formula. A photon number state, for which �ΔN2� = �ΔN̂2� = 0 is the most extreme 
example of a quantum state that gives sub-Poissonian statistics. 

For homodyne detection, we see that �Δαθ
2� ≥ 1/4 in the semiclassical theory, be­

cause �Δaθ
2� ≥ 0. Because 1/4 represents the normalized value of the local oscillator 

shot noise, we say that �Δα2 
θ� = 1/4 is a shot-noise limited quadrature-measurement 

variance. If a quantum state yields �Δαθ 
2� = �Δâθ

2� < 1/4 we say that this state 
exhibits a sub-shot-noise quadrature variance. A sub-shot-noise quadrature variance 
is therefore another signature of non-classical light. This signature is also referred to 
as quadrature noise squeezing, because the Heisenberg uncertainty principle requires 
that �Δâθ

2��Δâθ
2
+π/2� ≥ 1/16. A squeezed state |β; µ, ν� with µ∗νe−2jθ > 0 will have 

�Δâ2 
θ� = (|µ| − |ν|)2/4 < 1/4, and �Δâ2 

θ��Δâ2 
θ+π/2� = 1/16, and so is an excellent ex­

ample of a sub-shot-noise non-classical state. The situation for heterodyne detection 
is very similar. Here we see that �Δαk

2� ≥ 1/2, for k = 1, 2, in the semiclassical theory, 
where equality in this expression—given by the normalized local oscillator shot noise 
variance—represents the shot noise limit for heterodyne detection. A quantum state 

2That �Â� = tr(ρ̂Â) gives the expectation of an operator Â when the system is in the state 
characterized by the density operator ρ̂ was shown in a homework problem. 
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whose �Δα2 
k� is less than 1/2 is a sub-shot-noise signature of non-classical light. The 

squeezed state |β; µ, ν� with µ∗ν > 0 gives this sub-shot-noise signature for k = 1 
and the squeezed state |β; µ, ν� with µ∗ν < 0 gives this sub-shot-noise signature for 
k = 2. 

Variance signatures of non-classicality are widely used experimentally, but they 
are not definitive. Consider the pure state 

|ψ� ≡ (|0� + |N�)/
√

2, (17) 

where N > 2 and |n�, for n = 0 or N , is a photon number state. Here quantum 
photodetection theory gives us 

1/2, for n = 0 or N , 
Pr(N = n) = |�n|ψ�|2 = 

0 otherwise 
(18) 

which has mean �N̂� = N/2 and variance �ΔN̂2� = N2/4. Thus, because N2/4 > N/2 
for N > 2, this state does not have a sub-Poissonian photon counting variance. It is 
a simple matter to verify—using the effect of the annihilation operator on a number 
state—that 

�â� = 0 and �â2� = 0, (19) 

for this state. It then follows that 

ˆ a†ejθ ae−jθ + ˆ�âθ� = 
2 

= 0 (20) 

and hence ��� 
ˆ a†ejθ �2 

N + 1 ae−jθ + ˆ�Δâθ
2� = �âθ

2� =
2 

=
4 

> 1/4. (21) 

Thus this state does not yield a sub-shot-noise variance in homodyne detection, re­
gardless of the local oscillator’s phase shift θ. Because heterodyne detection yields 

�Δαk
2� = �Δâk

2 � + 1/4, for k = 1, 2, (22) 

we see that this state does not produce a sub-shot-noise variance in heterodyne de­
tection. So none of its measurement variances for the basic photodetection configu­
rations break out of the limits of semiclassical theory. Nevertheless, this state is not 
a classical state, i.e., its photodetection statistics cannot be fully described by the 
semiclassical theory. To see that this is so, we need to provide an explicit descrip­
tion of a classical state, i.e., a state all of whose quantum photodetection statistics 
coincide with the corresponding results from semiclassical theory. 
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Complete Characterization of Classical versus Non-Classical States 

Suppose that the density operator specifying the state associated with the â mode 
can be written in the following form, 

ρ̂a = d2αP (α, α∗)|α��α|, (23) 

where {|α�} are the coherent states and P (α, α∗) is a classical probability density 
function for two real variables, α1 = Re(α) and α2 = Im(α), i.e., 

P (α, α∗) ≥ 0 and d2αP (α, α∗) = 1. (24) 

Physically, this is saying that the mixed state ρ̂a is a classically-random mixture— 
with pdf P (α, α∗)—of coherent states. Mathematically, we know that the resulting 
probability distributions for direct, homodyne, and heterodyne detection of this state 
are � � 

2Pr(N = n) = d2αP (α, α∗)|�n|α�| = d2αP (α, α∗)
|α|2n

n

e

! 

−|α|2 

, (25) 

exp[−2(αθ − βθ)
2] 

p(αθ) = d2β P (β, β∗)|θ�αθ|β�|2 = d2β P (β, β∗) � 
π/2 

, (26) 

and � � 
p(α) = d2β P (β, β∗)

|�α|β�|2 

= d2β P (β, β∗)
exp[−|α − β|2] 

, (27) 
π π 

respectively, where {|β�} are coherent states and βθ = Re(βe−jθ). Identifying pa(α) = 
P (α, α∗) as the classical pdf needed for a in the semiclassical theory shows that 
the quantum theory and semiclassical theories make identical predictions for these 
complete statistical characterizations of direct, homodyne, and heterodyne detection. 
Thus Eq. (23) defines the classical states. Because it requires P (α, α∗) to be a pdf, 
the right-hand side of Eq. (23) is called a proper P -representation. States that do not 
have proper P -representations must have some photodetection statistics that cannot 
be properly quantified in the semiclassical theory. In this regard, we note that the 
state given in Eq. (17) does not have a proper P -representation, i.e.., it is non­
classical even though none of its basic photodetection variances provide non-classical 
signatures.3 

On the homework you showed that 

P (α, α∗) = 
d2ζ

χρa (ζ∗, ζ)e−ζα∗+ζ∗α , (28) 
π2 N 

3To see that this state does not have a proper P -representation, you should convince yourself 
that: (1) the only pure states that have proper P -representations are the coherent states; and (2) 
that (|0� + |N�)/

√
2 for N ≥ 1 is not a coherent state. 

6




� 

� 

i.e., the P -function is the inverse Fourier transform of the normally-ordered charac­
teristic function, 

χρa (ζ∗, ζ) ≡ tr(ρ̂ae 
ζâ† 
e−ζ∗â). (29) N 

We know, from previous work, that the anti-normally ordered characteristic function 
is related to the normally-ordered characteristic function as follows 

χρ
A 

a (ζ∗, ζ) ≡ tr(ρ̂ae
−ζ∗âe ζâ† 

) = χρ
N 

a (ζ∗ζ)e−|ζ|
2 
. (30) 

Moreover, we know—again from the homework—that 

�α ρ̂A α� d2ζ
χρa

| |
= A (ζ

∗, ζ)e−ζα∗+ζ∗α . (31) 
π π2 

Mathematically, this says that �α|ρ̂a|α� and χρa (ζ∗, ζ) form a Fourier pair. However, A 

it is much more important to note that 

�α|ρ̂a|α� 
= 

tr(ρ̂a|α��α|) 
, (32) 

π π 

hence it is the pdf for heterodyne detection as 

Π(ˆ α) = 
|α��α|

, (33) 
π 

is the â POVM. Putting it all together tells us that knowing the heterodyne detec­
tion statistics of â is sufficient to determine the anti-normally ordered characteristic 
function, which, in turn, is sufficient to determine the density operator ρ̂a by means 
of the operator-valued inverse Fourier transform, 

d2ζ 
ρ̂a = χρ

A 
a (ζ∗, ζ)e−ζâ† 

e ζ
∗â, (34) 

π 

which was derived on the homework. Hence, if we have an ensemble of identically 
prepared single-mode fields, and perform a heterodyne detection measurement on 
each one, we can use the data so obtained to obtain an estimate of their common 
density operator ρ̂a. This estimate will converge to ρ̂a as the number of identically 
prepared systems grows without bound. 

As a practical matter, the preceding heterodyne approach to measuring the density 
operator is not generally employed. Instead, quantum state tomography, based on 
homodyne detection is used. Once again we need an ensemble of identically prepared 
quantum states ρ̂a. We now measure the homodyne statistics p(αθ) for a wide variety 
of θ values. Because the classical characteristic function associated with the pdf p(αθ) 
is 

Mαθ (jv) = �ejvâθ � = tr{ρ̂a exp[(jve−jθ/2)â + (jvejθ/2)â†]} = χρa (ζ∗, ζ) ζ=jvejθ /2,W |
(35) 
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awhere χρ
W (ζ

∗, ζ) is the Wigner characteristic function, the projection-slice theorem 
l processing allows us to recover
 χρa 

W (ζ
∗, ζ) from knowledge of the pdfs 

 θ  π/2 .4  Then, via 
from signa
{ p(αθ) : 0 ≤ ≤ }

2/2χρ
A (ζ

∗, ζ) = χρ
W (ζ

∗, ζ)e−|ζ|a a . (36)


and Eq. (34) we get back to the density operator ρ̂a. 

Optical Waveguide Tap 

Equipped with our knowledge of single-mode photodetection, let’s reexamine the 
optical waveguide tap that we considered in Lecture 1. The configuration of interest 
is shown, in its semiclassical instantiation, on Slide 7. A classical single-mode input 
signal with phasor asin and a classical single-mode tap input with phasor atin enter 
a lossless, passive, fused-fiber coupler with transmissivity T , where 0 < T < 1. The 
resulting phasors at the signal and tap output ports are therefore 

asout = 
√
T asin + 

√
1 − T atin and atout = 

√
1 − T asin −

√
T atin . (37) 

We’ll assume that the signal input is deterministic and that the tap input is zero. 
We’ll consider what happens if we perform homodyne detection at the signal input 
port or we perform homodyne detection at both the signal and the tap output ports. 
In all these homodyne detectors, we will take the local oscillator to be in phase with 
the classical field phasor. We then get the signal-to-noise (SNR) results posited in 
Lecture 1 and shown on Slide 7, viz., 

SNRin = 4|asin |2 (38) 

SNRout = 4|asout |2 = 4T |asin |2 (39) 

SNRtap = 4| |2 = 4(1 − T )| |2 . (40) atout asin 

Ideal semiclassical homodyne detection—with the local oscillator phase matched to 
the signal—results in an SNR given by 4 times the classical photon flux. So, because 
the fused fiber coupler is both lossless and passive, we have that 

SNRin = SNRout + SNRtap, (41) 

which shows that there is a fundamental SNR tradeoff between the signal output 
and tap output ports. With classical electromagnetic waves and the homodyne noise 
being local oscillator shot noise, what else could possibly be done? In quantum theory, 
however, there is something else that could be done. 

4There are interesting signal processing issues that arise in quantum state tomography, but we 
do not have the time to treat them. 
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Slide 8 summarizes the quantum theory for the waveguide tap. Now, the phasors 
from the semiclassical theory become photon annihilation operators, and the beam 
splitter relation becomes operator valued, viz.,5 

âsout = 
√
T ˆ + 

√
1 − T ˆ and atout = 

√
1 − T ˆ −

√
T ˆ .asin atin ˆ asin atin (42) 

If we take the signal input to be in the coherent state |asin �, the tap input to be in 
the vacuum state |0�, and the local oscillators used to homodyne at either the signal 
input port or both the signal output and tap output ports to be strong coherent states 
that are in phase with the mean signal at these locations then the quantum theory 
reproduces the SNR formulas that we have just exhibited for the semiclassical theory. 
This should come as no surprise, because all the fields involved are coherent states and 
coherent states have proper P -representations, i.e., they are classical states. Despite 
this quantitative equivalence, there is a fundamental qualitative difference between 
the two derivations of the preceding SNR formulas. In the semiclassical treatment 
the noise is local oscillator shot noise, whereas in the quantum theory the noise is the 
quantum noise of the field quadrature measurement. Therefore, if we allow tap input 
to be in an arbitrary zero-mean-field (�âtin � = 0) state, while leaving the signal input 
and the local oscillators as they were, we find that 

SNRin = 4|asin |2 (43) 

SNRout =
4T |asin |2 

(44) 
T + 4(1 − T )�Δâ2 

tθ 
� 

SNRtap = 
4(1 − T )|asin |2 

, (45) 
(1 − T ) + 4T �Δâ2 

tθ 
� 

where âtθ = Re(âtin e
−jθ) for θ defined by asin = |asin |ejθ. Now, it is clear that if we 

squeeze the âtθ quadrature so that, for the given T value, we can neglect the tap-input 
noise contributions in the SNRout and SNRtap expressions we obtain 

SNRout ≈ SNRtap ≈ SNRin = 4|asin |2 , (46) 

in clear violation of the SNR tradeoff that exists in the semiclassical theory. 
Slide 9 is a parametric plot of SNRtap/SNRin versus SNRout/SNRin, as T varies 

from 0 to 1, for the semiclassical and the quantum theories when the latter employs 
a squeezed-vacuum tap input state with 4�Δâ2 

tθ 
� = 0.1, i.e., for 10 dB of quadrature 

noise squeezing. We see that there is a dramatic difference between the two curves, 
in that the performance of the squeezed-state waveguide tap pushes well up toward 
the perfect tap, SNRtap/SNRin = SNRout/SNRin = 1, corner, whereas the semiclas­
sical performance rides on the SNRtap/SNRin = 1 − SNRout/SNRin diagonal. Yet, 

5On the homework you will show that this quantum beam splitter relation makes sense in that 
it conserves photon number and commutator brackets. 
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despite this wonderful performance advantage, squeezed-state waveguide taps have 
not revolutionized optical networking. If you ask why, then I will answer loss . 

We will treat the quantum mechanics of (single-mode) attenuation and (single­
mode) amplification starting next time. Nevertheless, let’s jump start that discussion 
today by specifying the quantum photodetection theory for a slightly imperfect pho­
todetector, i.e., one whose quantum efficiency is not unity. By this I mean that the 
absorption of one photon does not necessarily result in one charge-q impulse in the 
photodetector’s output current, but all the other detector characteristics are as we 
have been assuming. As shown on Slide 10, we can account for a detector’s having a 
quantum efficiency η by the following artifice. Let â be the annihilation operator of 
the single-mode field that illuminates the detector’s light-sensitive region during the 
observation interval. We define a new annihilation operator, â�, by the relation 

â� = 
√
η â+ 

� 
1 − η âη, (47) 

where 0 ≤ η ≤ 1 is the detector’s quantum efficiency and âη is a photon annihila­
tion operator for a fictitious mode that is in its vacuum state. Note that âη and âη

†

both commute with â and with â†. Thus our â� definition has the appearance of a 
beam splitter in which only a fraction, η, of the incoming signal photons are trans­
mitted. Quantum photodetection theory for a photodetector with sub-unity quantum 
efficiency then states that: 

Direct detection realizes the â�†â� measurement. • 

• Homodyne detection realizes the â�θ = Re(â�e−jθ) measurement. 

• Heterodyne detection realizes the â� positive operator-valued measurement. 

Redoing the SNR evaluations for the squeezed-state waveguide tap when the output 
port homodyne measurements use quantum efficiency η detectors but the input port 
detction is still done at unity quantum efficiency then leads to6 

SNRin = 4|asin |2 (48) 

SNRout =
4ηT |asin |2

2 (49) 
ηT + (1 − η) + 4η(1 − T )�Δâtθ 

� 

SNRtap =
4η(1 − T )|asin |2

2 , (50) 
η(1 − T ) + (1 − η) + 4ηT �Δâtθ 

� 

Now if we squeeze the noise in the âtθ quadrature to the point that it can be neglected, 
we do not obtain ideal SNRtap/SNRin = SNRout/SNRin = 1 behavior. Slide 11 shows 

6Taking the ˆ mode to be in its vacuum state gives �Δât
2 
θ 
� = 1/4, and reduces these formulas atin 

to those obtained from the semiclassical theory of photodetection with quantum efficiency η. 
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what transpires when η = 0.7 and we either use a vacuum-state tap input or a 10 dB 
squeezed tap input. In the latter case we still get performance that exceeds the former, 
but it barely crosses the “semiclassical frontier”, SNRtap/SNRin = 1−SNRout/SNRin. 
Physically, the degradation in our waveguide tap’s performance comes from the zero-
point fluctuations that are introduced by the âη mode. 

The Road Ahead 

In the next lecture we shall study the single-mode quantum theories for linear at­
tenuation and linear amplification. In both cases we shall find that commutator 
preservation—i.e., ensuring that the proper Heisenberg uncertainty principle is obeyed 
at the output of these linear transformations—dictates fundamental differences from 
what we would assume in classical studies of these systems. 
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