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•	 H.A. Haus, Electromagnetic Noise and Quantum Optical Measurements (Springer 
Verlag, Berlin, 2000), Chap. 11. 

Introduction 

In this lecture we will begin by reprising the work done last time for the squeezed-
state waveguide tap, focusing on the case in which the photodetectors used in the 
homodyne measurements at the output ports have quantum efficiencies that are less 
than unity. We will use this as a springboard from which to address the classical 
versus quantum theories for single-mode linear attenuation and single-mode linear 
amplification. 

Optical Waveguide Tap with Ideal Photodetectors 

Slide 3 reprises the quantum photodetection theory of the optical waveguide tap that 
was introduced in Lecture 1 and analyzed in Lecture 10. Assuming that the input 
signal is a coherent state |asin � whose eigenvalue is real, and that the tap input mode 
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is in a squeezed-vacuum state |0; µ, ν� with µ, ν > 0, we found that the signal input, 
signal output, and tap output signal-to-noise ratios were, 

SNRin = 4|asin |2	 (1) 

SNRout =
4T |asin |2	

(2) 
T + (1 − T )(µ − ν)2 

SNRtap = 
4(1 − T )|asin |2 

,	 (3) 
(1 − T ) + T (µ − ν)2 

so that for ν sufficiently large—i.e., when there is sufficient quadrature noise squeez­
ing to make the tap input’s noise contribution an insignificant component of the 
quadrature noise seen at the two output ports—we get 

SNRout ≈ SNRtap ≈ SNRin = 4|asin |2 .	 (4) 

This result is beyond the realm of semiclassical photodetection, in that semiclassical 
photodetection predicts 

SNRout + SNRtap = SNRin,	 (5) 

which is the performance that is obtained from the quantum theory when the tap 
input is in the vacuum state. The contrast between semiclassical and quantum be­
havior of the optical waveguide tap is illustrated on Slide 4, which compares the SNR 
tradeoffs—for the semiclassical (vacuum-state tap input) and squeezed-state (10 dB 
squeezed tap input)—as the tap transmissivity is varied from T = 0 to T = 1. Un­
fortunately, as we quickly showed in Lecture 10, sub-unity photodetector quantum 
efficiency can easily wash out the desirable non-classical behavior of the squeezed-
state waveguide tap. Before quantifying that SNR-behavior loss, let us provide a 
more complete discussion of photodetection at sub-unity quantum efficiency. 

Single-Mode Photodetection with η < 1 Photodetectors 

Last time we introduced the following single-mode quantum photodetection model 
for a detector whose quantum efficiency, η, was less than one: 

•	 Direct detection measures the number operator N̂ � ≡ â�†â� associated with the 
photon annihilation operator 

â� ≡ √η â + 
� 

1 − η âη,	 (6) 

where 0 ≤ η < 1 is the photodetector’s quantum efficiency, â is the annihila­
tion operator of the single-mode field that is illuminating the photodetector’s 
light-sensitive region over the measurement interval, and âη is the annihilation 
operator of a fictitious mode representing the loss associated with η < 1 pre­
vailing. This fictitious mode is in its vacuum state, and its annihilation and 
creation operators commute with those associated with the illuminating field. 
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•	 Balanced homodyne detection measures the quadrature operator â�θ ≡ Re(â�e−jθ), 
where θ is the phase of the local oscillator relative to the signal mode. 

•	 Balanced heterodyne detection realizes the probability operator-valued mea­
surement associated with the annihilation operator â�. Equivalently, balanced 
heterodyne detection can be said to provide a simultaneous measurement of the 
commuting observables that are the real and imaginary parts of 

√
η (â + â†I ) + √

1 − η (âη + â† ), where âI is the annihilation operator of the image-band field Iη 

that is illuminating the photodetector’s light-sensitive region over the measure­
ment interval,1 and âIη is its associated η < 1 loss operator All four of the modal 
annihilation operators—â, âI , âη, and âIη —commute with each other and with 
each other’s adjoint (creation) operator. 

Last time we were not particularly explicit about the semiclassical theory for 
single-mode photodetection with quantum efficiency η < 1, so let us list its specifica­
tions now: 

•	 Semiclassical direct detection—for a single-mode classical field with phasor a 
illuminating the photodetector’s light-sensitive region over the measurement 
interval—yields a final count, N �, that, conditioned on knowledge of a, is a 
Poisson-distributed random variable with mean η|a|2 , i.e., 

Pr( N � = n | a = α ) = 
(η|α|2)

n

n

! 
e−η|α|2 

, for n = 0, 1, 2, . . . (7) 

•	 Semiclassical balanced homodyne detection—for a single-mode classical field 
with phasor a illuminating the photodetector’s light-sensitive region over the 
measurement interval—produces a quadrature measurement outcome αθ

� that, 
conditioned on knowledge of a, is a variance-1/4 Gaussian random variable with 
mean value 

√
η aθ = 

√
η Re(ae−jθ) 

•	 Semiclassical balanced heterodyne detection—for a single-mode classical field 
with phasor a illuminating the photodetector’s light-sensitive region over the 
measurement interval—yields quadrature measurement outcomes α1

� and α�
2 

that, conditioned on knowledge of a, are a pair of statistically independent 
variance-1/2 Gaussian random variables with mean values 

√
η a1 = 

√
η Re(a) 

and 
√

η a2 = 
√

η Im(a), respectively. 

Because experiments invariably rely on photodetectors whose quantum efficiencies 
can, at best, approach unity quantum efficiency, we are interested in understanding 
the condition under which the measurement statistics obtained from single-mode 

1Recall that for balanced heterodyne detection we have assumed that the excited signal mode 
has frequency ω and that the strong coherent state local oscillator has frequency ω − ωiF. The image 
band field—which is in its vacuum state—then has frequency ω − 2ωIF. 
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quantum photodetection coincide with those predicted by the single-mode semiclassi­
cal theory. It turns out that the answer is the same as for the case of unity quantum 
efficiency operation, i.e., if the â mode is in a coherent state or a classically-random 
mixture of such states—so that its density operator has a proper P -representation— 
then all the quantum photodetection statistics for an η < 1 detector are identical to 
their semiclassical counterparts. We’ll see a proof of this statement in Lecture 12. For 
now, let’s just present a few key results for direct detection and homodyne detection. 

Suppose we perform direct detection on a quantum field using a sub-unity quan­
tum efficiency detector. Then the mean of the measurement outcome N � obeys 

�N �� = �â�†â�� = �(√η â + 
� 

1 − η âη)
†(
√

η â + 
� 

1 − η âη)� (8) 

= η�â†â� + η(1 − η) (�â†âη� + �âη
† â�) + (1 − η)�âη

† âη� (9) 

= η�â†â�, (10) 

where the last equality follows from âη being in its vacuum state. A similar, but 
lengthier, calculation gives us 

�N �2� = �(â�†â�)2� = �â�†2â�2� + �â�†â�� (11) 

= η2�â†2â2� + η�â†â�, (12) 

where the second equality follows by squaring out and using [â�, â�†] = 1, and the last 
equality follows from use of â� = 

√
η â + 

√
1 − η âη with âη being in its vacuum state. 

From the preceding two results we have that photocount variance satisfies 

�ΔN �2� = η�â†â� + η2(�â†2â2� − �â†â�2). (13) 

Two special cases of this variance formula are worth exhibiting. First, when the â 
mode is in the coherent state |α� we find that 

�ΔN �2� = η|α|2 = �N ��, (14) 

i.e., the photocount variance is Poissonian (equal to its mean), as expected from our 
statement that, even if η < 1 prevails, the quantum theory reduces to the semiclassical 
theory when the input mode is in a coherent state. 

The second special case to examine is when the â mode is in the number state 
|n�. Now we obtain 

�N �� = ηn and �ΔN �2� = ηn + η2[n(n − 1) − n 2] = η(1 − η)n. (15) 

These results are consistent with the binomial distribution 

Pr( N � = m state = n� ) = 
n

ηm(1 − η)(n−m) , for m = 0, 1, 2, . . . , n, (16) | |
m 
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a result that you will derive on the homework. We can provide an intuitive explanation 
for this binomial distribution if we regard photons as rigid particles that, upon arrival 
at the photodetector, are successfully detected according to a Bernoulli process, i.e., 

•	 whether or not a particular photon registers a count is statistically independent 
of the count registration behavior of the other photons; 

•	 the probability that a particular photon registers a count is η. 

Appealing though this interpretation may be, it should not be relied on in general, as 
it does not give us a useful interpretation for homodyne detection with a sub-unity 
quantum efficiency photodetector. 

Consider the case of balanced homodyne detection of the squeezed state |β; µ, ν�
when θ = 0, and β, µ, and ν real valued. In this case we find that the â�1 quadrature 
measurement has its mean and variance given by 

�â�1� = 
√

η β(µ − ν) and �Δâ1
�2� = 

η(µ − ν)2 

4

+ (1 − η) 
. (17) 

To get the complete statistics of this homodyne measurement, we can resort to char­
acteristic functions. We know that 

Ma�1 
(jv) = �e−ζ∗â�+ζâ�† �|ζ=jv/2	 (18) 

= �e−ζ∗
√

η â+ζ
√

η â† ��e−ζ∗
√

1−η âη +ζ
√

1−η âη
†
� | (19) ζ=jv/2 

= Ma1 (jv
√

η) Maη1 
jv 1 − η ,	 (20) 

where 
Ma1 (jv) ≡ �ejvRe(â)� and Maη1 

(jv) ≡ �ejvRe(âη )�. (21) 

Using our known quadrature statistics for the squeezed state and the vacuum state 
we then find 

Ma� (jv) = ejv
√

η β(µ−ν)+v2[η(µ−ν)2+(1−η)]/8 ,	 (22) 
1 

which implies that the â�1 measurement outcome is a Gaussian random variable with 
mean and variance as given earlier. A simple derivation of this same result follows 
directly from � 

â�1 = 
√

η â1 + 1 − η âη1 . (23) 

The signal and fictitious loss modes are in a product state, so the outcomes of mea­
surements of their respective first quadratures are statistically independent random 
variables. For the states that we have assumed for these modes, the outcome of the 
â1 measurement is Gaussian distributed with mean β(µ − ν) and variance (µ − ν)2/4, 
and the outcome of the âη1 measurement is Gaussian distributed with mean zero and 
variance 1/4. Because weighted sums of independent Gaussian random variables are 
Gaussian distributed, we are immediately led to the â�1 measurement statistics stated 
above and shown on Slide 6. 
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Optical Waveguide Tap with η < 1 Photodetectors 

The homodyne detection results of the preceding section immediately afford what 
we need to perform the SNR evaluations for the squeezed-state waveguide tap when 
the output port homodyne measurements use quantum efficiency η detectors but the 
input port detection is still done at unity quantum efficiency. In general, we have 
that 

SNRin = 4|asin |2 (24) 

SNRout =
4ηT |asin |2 

(25) 
ηT + (1 − η) + 4η(1 − T )�Δâ2 

t1 
� 

SNRtap =
4η(1 − T )|asin |2 

, (26) 
η(1 − T ) + (1 − η) + 4ηT �Δâ2 

t1 
� 

where have continued to assume that the signal input’s coherent-state eigenvalue is 
real and that the homodyne detectors are all measuring first (real part) quadratures. 
Slide 11 shows what transpires when η = 0.7 and we either use a vacuum-state tap 
input or a 10 dB squeezed tap input. In the latter case we still get performance that 
exceeds the former, but it barely crosses the “semiclassical frontier”, SNRtap/SNRin = 
1 − SNRout/SNRin. Physically, the degradation in our waveguide tap’s performance 
comes from the zero-point fluctuations that are introduced by the âη mode. 

Single-Mode Classical Models for Linear Attenuation and Lin­
ear Amplification 

Our study of sub-unity quantum efficiency is really an example of the quantum theory 
of linear attenuation (linear loss). Linear attenuation and linear amplification are 
important systems for us to understand, and so today we will begin their treatment— 
in the single-mode regime—by first considering their classical behavior. 

For a single-mode classical field 

aine
−jωt 

Ein(t) = √
T

, for 0 ≤ t ≤ T , (27) 

applied at the input to an ideal linear attenuator with transmissivity 0 ≤ L < 1, we 
have that the resulting output field is 

aoute
−jωt 

Eout(t) = √
T

, for 0 ≤ t ≤ T , (28) 

where 
aout = 

√
L ain, (29) 
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and, for simplicity, we have suppressed any propagation delay that the attenuator 
may impose. Equations (28) and (29) embody the linearity of this attenuator and 
the fact that classical physics does not require the inclusion of any noise.2 

The classical theory for linear amplification of the single-mode field (27) takes a 
very similar form, viz., the output field is 

aoute
−jωt 

Eout(t) = √
T

, for 0 ≤ t ≤ T , (30) 

where 
aout = 

√
G ain, (31) 

with 1 < G < ∞ being the amplifier’s gain and once again propagation delay has 
been suppressed. Here too we have linearity without any noise injection.3 

The absence of any noise injection in our classical models for single-mode linear 
attenuation and single-mode linear amplification leads to signal-to-noise preservation 
in classical measurements of energy and quadratures. In particular, suppose that 
we can perform classical measurements of Hin = �ω|ain|2 and Hout = �ω|aout|2, the 
energies at the inputs and outputs of the preceding attenuator and amplifier, where 
ain is taken to be a complex-valued classical random variable. These are classical 
measurements, not semiclassical photodetection measurements, viz., we get to observe 
Hin and Hout without there being any shot noise. The only noise, therefore, on these 
measurements, is due to that which is intrinsic to ain. Thus, for the attenuator, we 
see that 

�Hout� = L�ω�|ain|2� = L�Hin�, (32) 

and 
�ΔHout

2 � = (L�ω)2�[Δ(|ain|2)]2� = L2�ΔH2 (33) in�, 
so that there is no change in the signal-to-noise ratio 

�Hout�2 �Hin�2 

SNRHout = = = SNRHin . (34) 
�ΔH2 �ΔH2 

out� in� 

If we perform the same analysis for the amplifier, we reproduce the preceding results 
with G appearing in place of L in (32) and (33), so that SNR preservation continues 
to hold. 

Now suppose that we perform classical measurements of the input and output 
quadrature components ainθ = Re(aine

−jθ) and aoutθ = Re(aoute
−jθ) for the amplifier. 

Here we find that 

and 2 2 (35) �aoutθ � = 
√

G �ainθ � �Δaoutθ 
� = G�Δainθ 

�, 
2Here we are neglecting the thermal noise associated with dissipative elements in statistical 

mechanics. 
3Experimenters are well aware that real amplifiers have noise figures that measure the extra noise 

that they inject. Once again, however, the fundamental requirement for there to be such noise arises 
out of statistical mechanical considerations that we are omitting from our classical theory. 
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and once again signal-to-noise ratio is preserved, 

2 2 

SNRaoutθ 
= 
�aout

2 
θ � = 

�ainθ 

2

�
= SNRainθ 

. (36) 
�Δaoutθ 

� �Δainθ 
� 

If we perform the same analysis for the attenuator, we reproduce these quadrature 
measurement results with L appearing in place of G in (35), so that SNR preservation 
continues to hold. 

Single-Mode Quantum Models for Linear Attenuation and 
Linear Amplification 

In Lecture 10 we went from the classical input-output relation for a transmissivity-T 
beam splitter to its quantum version by the simple artifice of changing every classical 
phasor a to a corresponding annihilation operator â. This was in keeping with our 
work on the quantum harmonic oscillator in that the classical field (27) at the input 
to our linear attenuator or linear amplifier becomes the field operator, 

Êin(t) = 
âin√e

−

T 

jωt 

, for 0 ≤ t ≤ T , (37) 

with â being an annihilation operator, in the quantum theory. So, can’t we just write 

Êout(t) = 
âout√e

T 

−jωt 

, for 0 ≤ t ≤ T , (38) 

for the output field operator—with propagation delay suppressed—and use 

âout = 
√

L âin and âout = 
√

G âin, (39) 

for the respective output annihilation operators of the linear attenuator and the linear 
amplifier? The answer is quite definitely NO! Both the input and the output annihi­
lation operators must have the canonical commutator relations with their associated 
creation operators, i.e., we require 

[âout, âout
† ] = [âin, âin

† ] = 1, (40) 

in order to preserve the Heisenberg uncertainty principle for quadrature measure­
ments. The näıve quantum input-output relations (39) yield 

L[ˆ a† ] = L < 1, for the attenuator ain, ̂ in
[âout, âout

† ] = (41) 
G[âin, âin

† ] = G > 1, for the amplifier, 

so neither one is acceptable as neither one gives the correct uncertainty principle for 
a single-mode field, 

�Δâout
2 

1 
��Δâout

2 
2 
� ≥ 1/16. (42) 
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It turns out that we already now how to “fix” the quantum input-output relation 
for linear attenuation. What we need is 

âout = 
√

L âin + 
√

1 − L âL, (43) 

where âL is the annihilation operator of an auxiliary mode associated with the atten­
uation process. This, after all, is just what we did for sub-unity quantum efficiency, 
hence we know that it gives [âout, â

†
out] = 1. Furthermore, our understanding of beam 

splitters gives us a physical interpretation of this input-output relation. We can re­
gard âin and âL as the annihilation operators for single-mode fields that illuminate 
the two input ports of a transmissivity-L beam splitter, and take âout to be the anni­
hilation operator of the output port from that beam splitter which is coupled to the 
signal (âin) port by the transmissivity-L path. Ordinarily, the auxiliary mode will be 
in its vacuum state, as we have stated for the case of sub-unity quantum efficiency 
photodetection, but this need not be the case. The auxiliary mode might be coupled 
to a thermal bath, so that its state is given by the density operator 

�∞ N̄n 

ρ̂aL = (N̄ + 1)n+1 
|n�LL�n|, (44) 

n=0 

where {|n�L} are the âL mode’s numbers states and 

1
N̄ ≡ �ω/kB TR 

, (45) 
e − 1

with kB being Boltzmann’s constant and TR being the reservoir’s absolute tem­
perature.4 Commutator preservation—and hence Heisenberg uncertainty principle 
preservation—is unaffected by the choice of state for the âL mode. 

For both the waveguide tap and free-space diffraction it is easy to see why a beam 
splitter relation governs the attenuation process, and the physical locus of the auxil­
iary mode can be readily identified. For sub-unity quantum efficiency photodetection, 
we can see why a beam splitter relation makes phenomenological sense, but we may 
not be able to identify a precise physical locus for the auxiliary mode that enters into 
the quantum input-output relation â� = 

√
η â+

√
1 − η âη. The situation for the linear 

amplifier—at least given what we have learned so far—falls very much into this latter 
category, i.e., we can (and will) say that the appropriate single-mode input-output 
relation for the linear amplifier is 

âout = 
√

G âin + 
√

G − 1 â†G, (46) 

where âG is the annihilation operator of an auxiliary mode associated with the am­
plification process, but we do not have (as yet) any example with which to identify a 

4On the homework you will see that this state is a maximum entropy state for the given average 
photon number. 
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physical locus for this auxiliary mode. It turns out—although we will not show this 
to be so—that if the amplifier is a laser gain cell (a laser operated below its oscilla­
tion threshold), then the âG mode is associated with spontaneous emission. We will 
see—later this term—that if the amplifier is a two-mode parametric amplifier, then 
the âG mode is associated with the parametric amplifier’s idler mode. For now, let’s 
content ourselves with verifying that (46) preserves commutator brackets. We have 
that 

[âout, ̂ ] = G[ˆ a† a† aG] = G − (G − 1) = 1,a† ain, ̂ ] + (G − 1)[ˆG, ̂ (47) out in

where the first equality follows because âin and âG are associated with different field 
modes, and the second equality uses the commutator relation for annihilation opera­
tors and their associated creation operators. The least extra noise that the â† termG 

can inject into the âout mode is when the former is in its vacuum state. As was the 
case for the linear attenuator, however, there are physical examples in which âG may 
be in a non-vacuum state owing, e.g., to its being coupled to a thermal reservoir. 
Nevertheless, commutator preservation—and hence Heisenberg uncertainty principle 
preservation—is unaffected by the choice of state for the âG mode. 

To contrast our quantum input-output equations with their classical counterparts, 
we shall consider the relations between input and output SNRs for direct detection 
and homodyne detection arising from the quantum theory. We’ll do the homodyne 
(quadrature measurement) case first, because it is simpler and, then we will turn to 
the direct detection case. 

Homodyne Detection SNR Relations 

For the attenuator, with the âL mode in its vacuum state, we have that 

�âoutθ � = 
√

L �âinθ � + 
√

1 − L �âLθ � = 
√

L �âinθ �, (48) 

and 
�Δâ 2outθ 

� = L�Δâ 2inθ 
� + (1 − L)�Δâ 2 

Lθ 
� = L�Δâ 2inθ 

� + (1 − L)/4, (49) 

where we have used the fact that the input and auxiliary modes are in a product state 
to obtain the first equality. The output SNR is now degraded from the input SNR, 

L�âinθ �2 �âinθ �2 

SNRoutθ = 
2 < 

2 = SNRinθ , (50) 
L�Δâinθ 

� + (1 − L)/4 �Δâinθ 
� 

because of the zero-point fluctuations contributed by the âL mode. In the special 
case of a coherent-state input mode, the preceding variance and SNR results for the 
attenuator become 

�Δâout
2 

θ 
� = 1/4 and SNRoutθ = LSNRinθ . (51) 

Here we see that attenuation of coherent state light leads to a linear degradation of 
the homodyne detection SNR. 
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For the amplifier, with the âG mode in its vacuum state, we find that 

âout1 = 
√

G âin1 + 
√

G − 1 âG1 and âout2 = 
√

G âin2 −
√

G − 1 âG2 , (52) 

from which calculations similar to what we just did for the attenuator—whose details 
will be left as exercises for the reader—lead to 

2 2�âoutk � = 
√

G �âink � and �Δâoutk 
� = G�Δâink 

� + (G − 1)/4, (53) 

for k = 1, 2, leading to the output signal-to-noise ratio expression 

SNRoutk = 
2 

G�âink �2 

< 
�âink 

2

�2 

= SNRink , for k = 1, 2, (54) 
G�Δâink 

� + (G − 1)/4 �Δâink 
� 

where the degradation in the output SNR is due to the zero-point fluctuations con­
tributed by the âG mode. In the special case of a coherent-state input mode, the 
preceding variance and SNR results for the amplifier become 

G �Δâ 2outk 
� = (2G − 1)/4 and SNRoutk = 2G − 1 

SNRink for k = 1, 2. (55) 

Here we see that amplification of coherent state light leads to a degradation of the 
homodyne detection SNR that is at most 3 dB, with maximum degradation occurring 
in the limit G →∞. 

Direct Detection SNR Relations 

For the attenuator—with the âL mode in its vacuum state and the âin mode in the 
coherent state |αin�—there is no work to be done, because this case coincides with 
that of sub-unity quantum efficiency photodetection. We immediately have 

and N2 (56) �N̂out� = L�N̂in� �Δ ˆ
out� = L�N̂in�. 

Thus the photocount variance is Poissonian,5 and the SNR degrades linearly with 
decreasing L, 

�N̂out�2 L�N̂in�2 

SNRNout = = = LSNRNin . (57) 
�ΔN̂2 �ΔN̂2 

out� in� 
For the amplifier, however, there is work to be done. Here, assuming that the âG 

mode is in its vacuum state and the âin mode is in the coherent state |αin�, we can 
easily find the average photon count at the amplifier’s output: 

�N̂out� = �(
√

G âin + 
√

G − 1 â†G)†(
√

G âin + 
√

G − 1 â†G)� (58) 

= a† âin� + (G − 1)�âGâ† αin
2 + G − 1 = G�N̂in� + G − 1.(59) G�ˆin G� = G| |

5Indeed, as we have seen earlier the photocount is Poisson distributed in this case. 
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The variance is harder to compute. We start by using commutator brackets to obtain 

N2 a†2 2 2)�Δ ˆ
out� = �â†outâout� + (�ˆoutâout� − �â

†
outâout� (60) 

2Next, we work on �â†2 âout� by writing ˆ in terms of ˆ and â† , multiplying out, out aout ain G

and using the assumed coherent states to evaluate the averages. The details are left 
to the reader, but the final result is 

N2�Δ ˆ
out� = [G�N̂in� + (G − 1)] + [2G(G − 1)�N̂in� + (G − 1)2]. (61) 

In Lecture 12 we shall rederive the photocount variance by a different route, and in 
so doing develop physical interpretations for the two bracketed terms in this �Δ ˆ

out�N2 

expression. For now, we just note that6 

�N̂out�2 �N̂in�2 

SNRNout = < = SNRNin . (62) 
N2 N2�Δ ˆ

out� �Δ ˆ
in� 

The Road Ahead 

In the next lecture we shall continue our work on linear attenuation and linear am­
plification. We will use characteristic functions to obtain their complete statistical 
characterizations. We shall also introduce the two-mode description of paramet­
ric amplification, which will lead us to distinguish between phase-insensitive linear 
amplification—what we have discussed today—and phase-sensitive linear amplifica­
tion. 

6Because �N̂out� includes a G − 1 term that has no relation to the input mean �N̂in�, a more 
appropriate definition of the output signal-to-noise ratio is SNRNout = (G�N̂in�)2/�Δ ˆ

out�, i.e., N2 

only count the portion of the output mean that is proportional to the input mean as “signal,” 
but include all contributions to the variance of the output as “noise.” With this definition we 
still find SNRout < SNRin. Moreover, when �N̂in� � 1 we find that this new definition leads to 
limG→∞ SNRout = SNRin/2. 
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