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Introduction 

Today we move on to the final section of material on quantum optical communica­
tion: the full multi-temporal mode treatments of electromagnetic field quantization, 
photodetection theory, nonlinear optics, non-classical light generation, and quantum 
interference. Because our prerequisite subjects—6.011 and 18.06—do not include 
enough background for these topics, we’ll tread gently. Hence there will not be any 
more problem sets. (On the other hand, you will need the freed-up time to do the 
reading for and preparation of your term papers.) 

Classical Electromagnetic Waves in Free Space 

Before we can quantize the electromagnetic field, we must develop some understanding 
of the classical electromagnetic field. 

From Maxwell’s Equation to the Wave Equation 

Consider a region of empty space in which there is no charge density and no current 
density, i.e., it is source free. Classical electromagnetism within such a region is gov­
erned by the source-free version of Maxwell’s equations with the vacuum constitutive 
relations. In differential form these equations are as follows: 

∂ �× E� (�r, t) = −µ0 
∂t 

H� (�r, t) and � · �0E� (�r, t) = 0 (1) 

� × �H(�r, t) = �0 
∂ 
∂t 

�E(�r, t) and � · µ0 
�H(�r, t) = 0, (2) 
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where E� (�r, t) and H� (�r, t) are the electric and magnetic fields (units V/m and A/m), 
and �0 and µ0 are the permittivity and permeability of free space. The curl and 
divergence equations for the electric field are Faraday’s law and Gauss’ law, and the 
curl equation for the magnetic field is Ampère’s law. 

For our purposes, it is convenient to work in the Coulomb gauge, i.e., we introduce 
a vector potential A�(�r, t) that is divergence free, � · A�(�r, t) = 0. Then, if we take 

� · �
∂t 
� · �

� ∂A�(�r, t)
E(�r, t) ≡ − 

∂t 
and H� (�r, t) ≡ 

µ

1 

0 
� × A�(�r, t), (3) 

we find that 
∂ 

E(�r, t) = − A(�r, t) = 0, (4) 

because of the Coulomb gauge condition, and 

H(�r, t) = A(�r, t)] = 0, (5) � · �
µ

1 

0 
� · [�× �

because of the vector calculus identity � · [� × F� (�r, t)] = 0, for any F� (�r, t). In 
addition, (3) gives us 

∂ ∂H� (�r, t)�× E� (�r, t) = −
∂t 
�× A�(�r, t) = −µ0 

∂t 
. (6) 

Thus, in Coulomb gauge, with the electric and magnetic fields derived from the vector 
potential via (3), we automatically satisfy three of Maxwell’s four equations for a 
source-free region of free space. All we need do now is to determine how to satisfy 
Ampère’s law. 

To see what equation the vector potential must satisfy to ensure that the electric 
and magnetic fields obey Ampère’s law, we substitute (3) into the left-hand side of 
Ampère’s law, obtaining 

�× H� (�r, t) = 
µ

1 

0 
�×�× A�(�r, t) = 

µ

1 

0 
{�[� · A�(�r, t)] −�2A�(�r, t)} (7) 

1 2 �= −
µ0 
� A(�r, t), (8) 

where the second equality is a vector-calculus identity, and the third equality follows 
from the Coulomb gauge condition. Then, substituting (3) into the right-hand side 
of Ampère’s law, we see that Ampère’s law will be satisfied if 

2 � ∂E� (�r, t) ∂2A�(�r, t)� A(�r, t) = −µ0�0 
∂t 

= µ0�0 
∂t2 

. (9) 

Rearranging this equation leads to the 3-D vector wave equation, 

1 ∂2A�(�r, t)�2A�(�r, t) − 
c ∂t2 

= �0, (10) 
2 

where c ≡ 1/
√

µ0�0 has the units m/s, i.e., it is the speed of light. 
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Classical Plane-Wave Fields 

We have just seen that the electric and magnetic fields in a source-free region of free 
space can be specified in terms of a Coulomb-gauge vector potential according to (3), 
and Maxwell’s equations will be satisfied if the vector potential satisfies (10).1 This 
equation is equivalent to three scalar differential equations, one for each Cartesian 
component of A�(�r, t), i.e., 

1 ∂2Ak(�r, t)�2Ak(�r, t) − 
c2 ∂t2 

= 0, for k = x, y, z. (11) 

That each one of these Cartesian-component equations is a wave equation can be 
seen by the following simple special case. Suppose that the x component of the 
vector potential is only a function of z and t. You should then be able to verify that 

Ax(z, t) = f(t − z/c) + g(t + z/c) (12) 

is a solution to (11), with f( ) and g( ) being arbitrary real-valued functions. More­· ·
over, the term f(t − z/c) represents a +z-going wave moving at speed c, because at 
every constant-z plane the same pulse shape f(t) appears delayed by z/c. Likewise, 
g(t + z/c) represents a −z-going wave moving at speed c. 

In order to quantize the electromagnetic field in a source-free region of free space, 
we need to have a general form for the solution to (10). To get such a general form 
we shall employ separation of variables, i.e., we shall seek solutions to (10) in which 

1 � 
A�(�r, t) = 

2
√

�0 
q�l,σ(t)�u�l,σ(�r ) + cc, (13) 

�l,σ 

where cc denotes complex conjugate Here, the vector potential has been written in 
terms of a collection of complex-valued modes, {q� (t)�u� (�r )}, in which the time and l,σ l,σ

space dependencies factor apart. These modes are indexed by the three-dimensional 
vector, �l, which will see later specifies the direction of propagation, and a scalar, σ, 
which we will see later specifies the polarization state of the mode. Because the 3D 
wave equation for A�(�r, t) is linear, each complex-valued term on the right in (13) must 
satisfy a 3D wave equation, i.e., 

�2[q�l,σ(t)�u�l,σ(�r )] − 
1 
c2 

∂2 

∂t2 
[q�l,σ(t)�u�l,σ(�r )] = �0. (14) 

This equation reduces to 

[�2�u�l,σ(�r )]q�l,σ(t) − 
1 
c2 

�u�l,σ(�r ) 
d2q�l,σ(t) 

dt2 
= �0. (15) 

1One solution to this equation is the trivial one, A�(�r, t) = �0. Our interest, however, is in non­
trivial (non-zero) solutions. You might well ask how can their be a non-zero A�(�r, t) if there are no 
sources. The answer is that the sources which create this vector potential lie outside the region in 
which we are examining the electromagnetic field. 
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For there to be the assumed separation of variables, we must have that 

d2q�l,σ(t) 

dt2 
∝ q�l,σ(t), (16) 

where the proportionality constant is independent of space and time. Anticipating 
future results—and being mindful of the units—we shall assume that this proportion­
ality constant is a negative quantity −ω2, so that2 

�l 

d2q�l,σ(t) 
+ ω�l 

2 q�l,σ(t) = 0, (17) 
dt2 

and hence, by substitution of (17) into (15), 

ω2 

�2�u�l,σ(�r ) + 
c2 

�l �u�l,σ(�r ) = �0. (18) 

At this point, we should begin to feel comfortable with statements made earlier 
in the term about each mode of an electromagnetic field being a harmonic oscillator: 
Eq. (17) shows that q�l,σ(t) obeys the differential equation for frequency-ω�l simple har­

monic motion.3 Equation (18) is called the Helmholtz equation; it governs the spatial 
characteristics of the mode indexed by �l and σ. The key question that remains— 
insofar as this classical separation of variables is concerned—is how to determine the 
separation constant ω�l for each mode. The answer is that this constant depends on 
the boundary conditions for the source-free region of free space that is under consid­
eration. Because we do not want to be linked to a particular special shape for this 
region, we shall use periodic boundary conditions with an L × L × L unit cube, i.e. 
we shall require that 

�u�l,σ(�r ) = �u�l,σ(�r + nxL�ix + nyL�iy + nzL�iz), for all integers nx, ny, nz. (19) 

Later, we shall take L →∞, to make our unit cube encompass all of space. 
For finite L, consider 

�u�l,σ(�r ) = √1 

L3 
ej�k�l ·�r�e�l,σ, (20) 

where �k�l and �e�l,σ are 3D real-valued vectors with the latter having unit length. Plug­
ging this expression into the Helmholtz equation gives, 

[−�k�l · �k�l + ω�l 
2/c2]√1 

L3 
ej�k�l ·�r�e�l,σ = �0, (21) 

2In particular, our choice of a negative proportionality constant that is independent of the po­
larization index will be justified when we specialize to plane-wave solutions with periodic boundary 
conditions. 

3As a result, we know that q�l,σ(t) = q�l,σ e
−jω�t is the solution to this equation, with q�l,σ being l

the (complex-valued) initial condition at t = 0. 
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for which the dispersion relation 

�k�l · �k�l = ω�l 
2/c2 (22) 

must hold if there are to be non-trivial solutions. Imposing the periodic boundary 
conditions then forces 

�k�l = (2π/L) 
� 

lx ly lz 

�T 
, (23) 

where {lx, ly, lz} are integers, at least one of which is non-zero, so that we can have 
(2π/L)2(lx 

2 + ly 
2 + lz 

2) = ω�l 
2/c2 . 

To determine the constraints on the unit vector �e�l,σ, we return to the Coulomb 
gauge condition, from which we find 

� · [q�l,σ(t)�u�l,σ(�r )] = q�l,σ(t)[� · �u�l,σ(�r )] = 0, (24) 

for the mode indexed by (�l, σ). With our assumed form for �u�l,σ(�r ) we then get the 
transversality condition, 

j�k�l · �e�l,σ = 0, (25) 

i.e., the unit vector �e�l,σ is orthogonal to �k�l. Thus, for each �l we only need two 
orthogonal �e�l,σ vectors, viz., the two 3D unit vectors—indexed by σ = 0, 1—that are 

orthogonal to �k�l. 
What we have just derived are the plane-wave modes of the classical electromag­

netic field: 

A�(�r, t) = 
2
√

�

1 

0L3 

� 
q�l,σe

−j(ω�l t−�k�l ·�r )�e�l,σ + cc, (26) 
�l,σ 

where k�l obeys (22) and (23), and �e�l,σ obeys (25). These are plane-wave modes. In 

particular, that they are waves propagating at speed c in the direction of �k�l can be 
seen by rewriting ω�l t − �k�l · �r as ω�l (t −�i�l · �r/c), where �i�l ≡ �k�l/|�k�l | and |�k�l | = ω�l/c. 
That they are plane waves follows because �u�k,σ is constant in planes perpendicular to 
�k� We also note that the spatial mode functions are orthogonal, on the L × L × Ll. 
unit cube, because � � 

L×L×L 
d3�r �u�l,σ(�r ) · �u ∗ 

�l �,σ� (�r ) = 
1 
L3 

L×L×L 
d3�r ej(�k�l −�k�l � )·�r�e�l,σ · �e�l �,σ� (27) 

� 

= 
0, for l �= l� or σ �= σ� 

(28) 
1, for l = l� and σ = σ�, 

where �l =� �l� orthogonality follows from (23), and σ =� σ� orthogonality follows from 
(25). 
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� 

� 

The plane-wave modal decomposition of the vector potential gives rise, via (3), to 
the following plane-wave decompositions for the electric and magnetic fields, 

� ∂A�(�r, t) � jω�l e−j(ω� t−�k� �r) �E(�r, t) = − 
∂t 

=
2
√

�0L3 
q�l,σ 

l l · e�l,σ + cc (29) 
�l,σ 

H� (�r, t) = 
µ

1 

0 
�× A�(�r, t) = 

� 

2 
�jc 

µ0L3 
q�l,σ e

−j(ω�l t−�k�l ·�r) �k�l × �e�l,σ + cc. (30) 
�l,σ 

It will be convenient—as it was for the harmonic oscillator—to go to replace the {q�l,σ}
with a dimensionless reformulation {a�l,σ} defined by 

ω�l a�l,σ(t) = q�l,σ(t),	 (31) 
2� 

which reduces the preceding electric and magnetic fields to 

E� (�r, t) = 
� 

j 
2

�
�0

ω

L

�l 
3 a�l,σ e

−j(ω�l t−�k�l ·�r) �e�l,σ + cc	 (32) 
�l,σ 

k�l ·r) �H� (�r, t) =	
� 

j 
2µ

�
0ω

c 2 

�L
3 a�l,σ e

−j(ω�l t−� � k�l × �e�l,σ + cc. (33) 
�l,σ l

The first term on the right in (32) is the positive-frequency electric field, denoted 
E� (+)(�r, t), and likewise the first term on the right in (33) is the positive-frequency 
magnetic field, denoted H� (+)(�r, t). The second terms in these equations are then 
the negative-frequency fields, denoted E� (−)(�r, t) and H� (−)(�r, t). In classical electro­
magnetism, the negative-frequency fields are the conjugates of the positive-frequency 
fields. When we quantize the electromagnetic field, E� (�r, t) and H� (�r, t) will become 
Hermitian Hilbert-space operators for the electric and magnetic fields. The positive-
frequency field operators, in this case, are then non-Hermitian, whose adjoints are 
the associated negative-frequency field operators. 

Stored Energy and the Hamiltonian 

Our last step—in our treatment of classical electromagnetic waves in a source-free 
region of free space—is to use the expressions obtained at the end of the previous 
subsection to evaluate the stored energy in (Hamiltonian for) the L × L × L unit 
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� � � 

� � 

� 

� 

cube. We have that 

H = d3�r 
1

2 
�0E� (�r, t) · E� (�r t) + 

1

2
µ0H� (�r, t) · H� (�r, t) (34) 

L×L×L 

= 
� 1 hω̄�l a∗ +

1 �c2 

a∗ � � = 
� 

�ω�a∗ (35) 
2 
�0 

�0 
�l,σ 

a�l,σ 2
µ0 

µ0ω�
�l,σ 

a�l,σ k�l · k�l l �l,σ 
a�l,σ. 

� l �l,σ l,σ 

The last equality is especially pleasing, insofar as our imminent jump to quantized 
electromagnetic fields is concerned. It shows that the frequency-ω�l plane-wave mode 
with dimensionless coefficient a�l,σ—whose temporal dependence has already been 
shown to be simple harmonic motion—contributes an energy term �ω�a∗ a� to the l �l,σ l,σ 

Hamiltonian, exactly as we saw earlier this semester for our dimensionless reformula­
tion of the classical harmonic oscillator associated with the LC circuit. 

Quantum Electromagnetic Fields in Free Space 

We are now ready to quantize the electromagnetic field in a source-free region of free 
space using the plane-wave modes for periodic boundary conditions on an L × L × L 
unit cube. 

The Quantum Field Operators 

Because the classical plane-wave modes behave like a set of harmonic oscillators, each 
one gets quantized exactly as we did for the single harmonic oscillator associated with 
the LC circuit. In particular we write 

E�̂ (�r, t) = 
� 

j 
�ω�l â�l,σ e

−j(ω�l t−�k�l ·�r) �e�l,σ + hc (36) 
2�0L

3 
�l,σ 

H�̂ (�r, t) = 
� 

j 
�c 2 

â�l,σ e
−j(ω�l t−�k�l ·�r) �k�l × �e�l,σ + hc, (37) 

2µ0ω�L
3 

�l,σ l

for the electric and magnetic field operators, where hc denotes Hermitian conjugate 
(adjoint). The first term on the right in (36) is the positive-frequency electric field 

operator, E�̂ (+)(�r, t), and likewise the first term on the right in (37) is the positive-

frequency magnetic field operator, H�̂ (+)(�r, t). The second terms in these equations 
are then the negative-frequency field operators, 

ˆ
� 

ˆ
�† � 

ˆ
�†

E� (−)(�r, t) = E� (+)(�r, t) and H� (−)(�r, t) = H� (+)(�r, t) . (38) 
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� � � � 

� � 

The operators {â�l,σ} that appear in E�̂ (+)(�r, t) and H�̂ (+)(�r, t) are modal photon-
annihilation operators, viz., they have the canonical commutators, ⎧ � � ⎨ 1, for �l = �l � and σ = σ� 

â�l,σ, â�
†
l �,σ� = δ�l�l� δσσ� = (39) ⎩ 0, for �l =� �l � or σ =� σ�, 

where the {â�
† E�̂ (−)(�r, t) and H�̂ (−)(�
l,σ
}, which appear in r, t), are the associated modal 

photon-creation operators. The Hamiltonian for the field is then found to be the sum 
of the harmonic-oscillator Hamiltonians—the {Ĥ�l,σ}—for its individual plane-wave 
modes, i.e., � �� � 1 

Ĥ = Ĥ� = �ω� â† â� + , (40) l,σ l �l,σ l,σ 2 
�l,σ �l,σ 

where the �ω�l/2 term in the â�l,σ mode’s Hamiltonian is its zero-point energy, which, 
as we are well aware, is responsible for the zero-point fluctuations in its quadrature 
components, Re(â�l,σ) and Im(â�l,σ). 

Multi-Mode Number States and Coherent States 

Because the quantum electromagnetic field consists of a collection of orthogonal 
harmonic-oscillator modes whose annihilation and creation operators obey canonical 
commutation relations, it is easy to build up multi-mode number states and multi­
mode coherent states for the quantum field operators by taking tensor products of 
single-mode (harmonic-oscillator) quantum states. 

Let’s first develop the multi-mode number states. We define 

N̂�l,σ ≡ â�
† â�l,σ, (41) 
l,σ 

to be the number operator for the â�l,σ mode, and let {|n�l,σ��l,σ : n�l,σ = 0, 1, 2, . . . , }
denote its number states, viz., 

N̂�l,σ|n�l,σ��l,σ = n�l,σ|n�l,σ��l,σ. (42) 

The multi-mode number state, |n� is defined by the tensor-product construction, 

|n� = ⊗�l,σ|n�l,σ��l,σ. (43) 

It is an eigenket of the total photon number, N̂ ≡ �l,σ N̂�l,σ, because, 

N̂ |n� = N̂�l,σ|n� = (⊗(�l�,σ�)=(� �l,σ)|n�l�,σ� ��l�,σ� ) ⊗ N̂�l,σ|n�l,σ��l,σ (44) 
�l,σ �l,σ ⎛ ⎞ 

= n�l,σ(⊗�l�,σ� |n�l�,σ� ��l�,σ� ) = ⎝ n�l,σ 
⎠|n�. (45) 

�l,σ �l,σ 
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� 

� � 
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A similar calculation, which you should perform, shows that |n� is also an eigenket 
of the total Hamiltonian, viz., ⎛ ⎞


Ĥ|n� = ⎝ �ω�l (n�l,σ + 1/2)⎠|n�. (46) 
�l,σ 

Now let’s use the modal coherent states, {|α�l,σ��l,σ}, which obey 

â�l,σ|α�l,σ��l,σ = α�l,σ|α�l,σ��l,σ, (47) 

to build up the multi-mode coherent states via the tensor product construction, 

|α� ≡ ⊗�l,σ|α�l,σ��l,σ. (48) 

We then have that the classical positive-frequency field associated with this multi­
mode coherent state is 

l l ·E� (+)(�r, t) ≡ �α|E�̂ (+)(�r, t)|α� = 
� 

j 
2

�
�0

ω

L

�l 
3 α�l,σ e

−j(ω� t−�k� �r) �e�l,σ, (49) 
�l,σ 

from which it follows that 

E�̂ (+)(�r, t)|α� = E� (+)(�r, t)|α�, (50) 

as can easily be verified. Because of this relationship, we will use the notation 
E� (+)(�r, t)� for the multi-mode coherent state α� whose mean positive-frequency | 

E(+)(�

|
field is � r, t), to emphasize that it is a positive-frequency field-operator eigenket 
whose spatio-temporal eigenfunction is E� (+)(�r, t). 

The state |E� (+)(�r, t)� has special coherence properties. Consider the following 
normally-ordered quantum correlation function, �� �� �� 

N M

G(N,M)(v, r, t; w, r�, t�) ≡ ˆ Ê(+) E(−)(�rn, tn) (�rm 
�, t� ) . (51) vn wm m

n=1 m=1 

For the positive-frequency field operator: v = {v1, v2, . . . , vN }, with vn = x, y, or z, 
specifies a set of N Cartesian-component selections; r = {�r1, �r2, . . . , �rN } specifies a 
set of N spatial sampling points; and t = {t1, t2, . . . , tN } specifies a set of N sampling 
times. For the negative-frequency field operator: w = {w1, w2, . . . , wM }, with wm = 
x, y, or z, specifies a set of M Cartesian-component selections; r� = {�r1 

�, �r2 
�, . . . , �rM 

�}
specifies a set of M spatial sampling points; and t� = {t1� , t�2, . . . , t�M } specifies a set 
of M sampling times. When the field is in the multi-mode coherent state |E� (+)(�r, t)�, 
we find—and you should verify—that � �� � 

N M

G(N,M)(v, r, t; w, r�, t�) ≡ E(−) E(+) (� , tn) (� �, t� ) , (52) vn 
rn wm 

rm m

n=1 m=1 
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� �

� 

� 

� 

for all choices of the {N, v, r, t, M, w, r�, t�}, where E� (−)(�r, t) = E� (+)(�r, t) 
∗ 
. Were 

E�̂ (+)(�r, t) a classical, vector-valued random function of space and time, and E�̂ (−)(�r, t) 
its complex conjugate, then the preceding correlation-function factorization would 
imply that this field was in fact deterministic and equal to E� (+)(�r, t). This prop­
erty provides strong justification for our saying that the multi-mode coherent state 
represents a classical electromagnetic field. 

Prelude to Continuous-Time Photodetection 

Although some quantum optical communication calculations require that we employ 
the full polarization, space, and time properties of the positive-frequency field op­
erator, many others permit us to dispense with some of that generality. Thus, in 
preparation for next time’s treatment of continuous-time photodetection, let us sim­
plify our field operator notation by jettisoning some features of the full field-operator 
description that won’t be necessary in the what follows. We make the following 
assumptions: 

Assumption 1 Only one polarization is excited, so that scalar field operators will 

suffice, i.e., E�̂ (+)(�r, t) → Ê(+)(�r, t). 

Assumption 2 Only +z-going plane waves are excited, so transverse, i.e., (x, y), 
spatial characteristics and −z-going waves can be suppressed. Thus 

Ê(+)(�r, t) → Ê(+)(z, t) = 
� 

j 
2

�
�0

ω

L
l 
3 
âle

−j(ωlt−klz), (53) 
l>0 

where ωl/c = kl = 2πl/L. 

Assumption 3 Only a narrow bandwidth about a center frequency ωo is excited, so 
that we can treat all the excited modes as having the same photon energy, viz., 

Ê(+)(z, t) = 
� 

j 
�ωo 

âle
−j(ωlt−klz), for −T/2 ≤ t ≤ T/2, (54) 

2�0L3 
l>0 

where T = L/c. 

Assumption 4 We will work with a photon-units baseband field operator in the 
z = 0 plane. This means we will replace Ê(+)(z = 0, t) with4 

∞
ân

Ê(t) = √
T

e−j2πn/T , for −T/2 ≤ t ≤ T/2. (55) 
n=−∞ 

4By letting the sum over n range from −∞ to ∞ we are including negative-frequency terms in 
this field operator. However, because we only excite positive-frequency terms in a narrow bandwidth 
about the center frequency, we will only make measurements on this narrowband region. Thus it 
is fair to use Ê(t) as given, i.e., the negative-frequency terms in Ê(t) will be neither excited nor 
measured in the development that will follow. 
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We see that Ê(t) is given by an operator-valued Fourier series from which we 
get the following commutator result, 

Ê(t), Ê†(u) = 
∞ ∞

[ân, âm
† ] 

e−j2π(nt−mu)/T (56) 
T 

n=−∞ m=−∞ 

� e−j2πn(t−u)/T∞

= = δ(t − u). (57) 
T 

n=−∞ 

Assumption 5 We will let the quantization interval become −∞ < t < ∞. Now 
the Fourier series from our last assumption becomes a Fourier integral, 

Ê(t) = 
∞ dω Ê(ω)e−jωt and Ê(ω) = 

∞ 

dt Ê(t)ejωt, (58) 
2π−∞ −∞ 

with the following commutator relations, 

Ê(t), Ê†(u) = δ(t − u) and Ê(ω), Ê†(ω�) = 2πδ(ω − ω�). (59) 

The Road Ahead 

In Lectures 18 and 19 we will describe, compare, and contrast the semiclassical and 
quantum theories of continuous-time photodetection. 
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