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•	 For Gaussian-state theory of parametric amplifier noise and its quantum signa­
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fourth-order interference,” J. Opt. Soc. Am. B 11, 1130 (1994). 

–	 J.H. Shapiro, “Quantum Gaussian noise,” Proc. SPIE 5111, 382 (2003). 

Introduction 

In today’s lecture we will continue—and  complete—our  analysis of spontaneous para­
metric downconversion (SPDC) by converting the classical treatment from Lecture 20 
into a continuous-time field operator theory. As was done in Lecture 20, we shall as­
sume continuous-wave (cw) pumping with no pump depletion, and a collinear type-II 
configuration in which the signal and idler fields are +z-going plane waves that are 
orthogonally polarized. Moreover, we shall assume that the signal and idler center 
frequencies are both ωP /2, i.e., half the pump frequency.1 This frequency degeneracy 
of the signal and idler is not required for some nonclassical effects that can be ob­
tained from SPDC, but is necessary for others, e.g., quadrature-noise squeezing. Thus 
it is worthwhile imposing this condition at the outset. Once we have established the 

1Whereas the analysis in Lecture 20 assumed single-frequency signal and idler beams, the quan­
tum theory requires that we include all frequencies, hence our identification of center frequencies 
for these beams. 
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quantum theory for SPDC, we will add cavity enhancement to convert the downcon­
verter into an optical parametric amplifier (OPA). The OPA analysis that we shall 
perform will employ a simpler, lumped-element theory for the nonlinear interaction 
in the χ(2) material that will quickly lead to a Gaussian-state characterization which 
gives rise to quadrature-noise squeezing. In Lecture 22, we shall finish our survey 
of the nonclassical signatures produced by χ(2) interactions. There we shall consider 
Hong-Ou-Mandel interferometry and the generation of polarization-entangled photon 
pairs from SPDC, along with the photon-twins behavior of the signal and idler beams 
from an OPA. 

Classical Theory of Spontaneous Parametric Downconversion 

Slide 3 reprises our conceptual picture of spontaneous parametric downconversion. A 
strong, linearly-polarized (along �iP ) cw laser-beam pump at frequency ωP is applied 
to the entrance facet (at z = 0) of a length-l crystalline material that possesses a 
χ(2) nonlinearity. The action of the pump beam in conjunction with the crystal’s 
nonlinearity couples lower-frequency—signa l and idler—b eams that we shall assume 
to be linearly polarized along orthogonal directions�iS = �ix (signal) and�iI = �iy (idler), 
respectively, with common center frequency ωP /2. In Lecture 20 we treated the signal, 
idler, and (non-depeleting) pump inside the crystal as monochromatic plane waves, 
with positive-frequency, photon-units fields given by 

ES 
(+) 

(z, t) = AS (z)e−j(ωP t/2−kS z) (1) 

EI 
(+) 

(z, t) = AI (z)e−j(ωP t/2−kI z) (2) 

EP 
(+) 

(z, t) = AP e
−j(ωP t−kP z). (3) 

respectively, for the polarization components of interest. In this representation, 
�ωP |AS (z)|2/2 and �ωP |AI (z)|2/2 are the signal and idler powers flowing across the 
z plane, for 0 ≤ z ≤ l. For z > l, free-space propagation applies, i.e., the positive-
frequency, photon-units signal, idler, pump fields in that region are 

ES 
(+) 

(z, t) = AS (l)e
−j(ωP (t−(z−l)/c)/2−kS l) (4) 

EI 
(+) 

(z, t) = AI (l)e
−j(ωP (t−(z−l)/c)/2−kI l) (5) 

EP 
(+) 

(z, t) = AP e
−j(ωP (t−(z−l)/c)−kP l). (6) 

The coupled-mode equations that the signal and idler satisfy inside the nonlinear 
crystal were shown last time to be 

∂AS (z) jΔkz = jκA∗ 
I (z)e (7) 

∂z 
∂AI (z) 

= jκAS
∗ (z)ejΔkz , (8) 

∂z 
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for 0 ≤ z ≤ l. Here: Δk ≡ kP (ωP ) − kS (ωP /2) − kI (ωP /2) quantifies the phase-
mismatch between the signal, idler, and pump beams in terms of their respective 
dispersion relations, { kj (ω) ≡ ωnj (ω)/c : j = S, I, P } with { nj (ω) : j = S, I, P }
denoting the refractive indices for the relevant polarization components; and 

κ ≡ 
2c3�0nS(ω

�
S 

ω

)n
S ω

I (
I 

ω

ω

I

P 

)nP (ωP )A 
χ(2)AP (9) 

is a complex-valued coupling constant that is proportional to the pump’s complex 
envelope and the crystal’s second-order nonlinear susceptibility. The general solution 
to these equations is 

jΔkl sinh(pl) sinh(pl)
 jΔkl/2A
∗ 
I (0)
AS(l) = cosh(pl) − AS (0) + jκl (10)
e


2 pl
 pl


jΔkl sinh(pl) sinh(pl)
 jΔkl/2A
∗ 
S (0)
AI (l) = cosh(pl) − AI (0) + jκl , (11)
e


2 pl
 pl


where � 
p ≡ |κ|2 − (Δk/2)2 . (12) 

However, to get the most efficient interaction, we need phase-matched operation, i.e., 
Δk = 0, in which case the solution to Eqs. (7) and (8) reduces to 

κ
 ∗ 
IAS (l) = cosh( κ l)AS (0) + j sinh( κ l)A (0) (13)
|
 |
 |
 |


|
κ

κ|

∗ 
SAI (l) = cosh( κ l)AI (0) + j sinh( κ l)A (0), (14)
|
 |
 |
 |


|κ|


indicating increasing amounts of signal-idler coupling with increasing |κ|l, i.e., with 
increasing pump power or crystal length. 

Quantum Theory of Spontaneous Parametric Downconversion 

At the end of Lecture 20 we noted that the SPDC’s frequency-sum condition, ωP = 
ωS +ωI , and its phase-matching condition, kP = kS +kI , could be interpreted as energy 
conservation and momentum conservation, respectively, for a photon fission process in 
which a single pump photon divides into a signal photon and an idler photon. We also 
noted, in that Lecture, that the solutions to the coupled-mode equations, which we 
reprised in the previous section, are a two-mode Bogoluibov transformation, similar 
to what we saw earlier in the semester for our two-mode optical parametric amplifier. 
It is now time for us to go beyond these precursors and establish the quantum field-
operator theory for cw collinear SPDC at frequency degeneracy.2 

2The basic concepts we shall develop can be extended to non-degenerate, non-collinear operation, 
but we shall not do so. 
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Suppose that ÊS 
(+) 

(z, t) and ÊI 
(+) 

(z, t) for 0 ≤ z ≤ l are the positive-frequency, 
photon-units +z-going plane-wave field operators for the �ix and �iy polarization com­
ponents of the signal and idler, respectively.3 Because we must preserve δ-function 
commutators for the signal and idler field operators leaving the nonlinear crystal, we 
must include all frequencies in them. Hence we shall take ÊS 

(+) 
(z, t) and ÊI 

(+) 
(z, t) to 

have the following Fourier decompositions: 

ÊS 
(+) 

(z, t) = 
dω

ÂS (z, ω)e−j[(ωP /2+ω)t−kS (ωP /2+ω)z], (15) 
2π 

ÊI 
(+) 

(z, t) = 
dω

ÂI (z, ω)e−j[(ωP /2−ω)t−kI (ωP /2−ω)z]. (16) 
2π 

In these expressions, ÂS(z, ω) is the plane-wave field-component annihilation operator 
for the signal beam at frequency shift ω from frequency degeneracy, and ÂI (z, ω) is 
the plane-wave field-component annihilation operator for the idler beam at frequency 
shift −ω from frequency degeneracy.4 At the crystal’s entrance and exit facets, the 
signal and idler fields operators must have the following non-zero commutators that 
apply for free-space fields, 

[Ê
(+) 

(z, t), Ê
(+)†

(z, u)] = [ Ê(+) 
(z, t), Ê

(+)†
(z, u)] = δ(t − u), for z = 0, l, (17) S S I I 

which imply that 

[ÂS(z, ω), Â† (z, ω�)] = [ ÂI (z, ω), Â†(z, ω�)] = 2πδ(ω − ω�), for z = 0, l, (18) S I 

are the only non-zero frequency-domain commutators at the crystal’s input and out­
put. Any proper quantized form of the coupled-mode equations and their solutions 
must preserve these commutator brackets. 

We shall assume that the downconverter is phase-matched at frequency degener­
acy, viz., 

Δk(ω) ≡ kP (ωP ) − kS (ωP /2 + ω) − kI (ωP /2 − ω), (19) 

satisifes Δk(0) = 0, and that group-velocity dispersion can be neglected, so that 

Δk(ω) ≈ ωΔk� (20) 

3A full field-operator treatment should include all spatial modes, not just the +z-going plane-
wave modes, and both polarizations for all such modes. However, we shall limit our consideration 
to these polarizations of the +z-going signal and idler plane waves. For coherent (homodyne or 
heterodyne) detection measurements, spatial and polarization mode selection automatically occurs 
by choice of the local oscillator, so our assumption is easily enforced in such measurement scenarios. 
For direct detection, however, other spatial modes and polarizations may have to be included, 
depending on the SPDC and measurement configuration. 

4This sign convention is convenient because the coupled-mode equations for classical versions of 
these Fourier decompositions link AS (z, ω) to A∗ 

I (z, ω) and vice versa. 
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holds, where 

dΔk 
= −


dkS (ωP /2 + ω) 
dω


−

dkI (ωP /2 − ω) 

dω

Δk� ≡ 

dω

.
 (21)


ω=0 ω=0 ω=0 

Emboldened by last lecture’s comment about Bogoliubov transformations, as well 
as our earlier quantization of the classical harmonic oscillator, we shall assume that 
ÂS (z, ω) and ÂI (z, ω) obey the following coupled-mode equations: 

∂ÂS (z, ω)
= jκ ÂI

†(z, ω)ejωΔk�z (22) 
∂z 

∂ÂI (z, ω)
= jκ Â†

S (z, ω)ejωΔk�z , (23) 
∂z 

for 0 ≤ z ≤ l, where κ is the same coupling constant from the classical theory, i.e., 
Eq. (9).5 These equations have the following solution, cf. Eqs. (10) and (11): 

ÂS (l, ω) = 

jωΔk�l sinh(pl) sinh(pl) jωΔk�l/2cosh(pl) − 
2 pl 

ÂS (0, ω) + jκl 
pl 

Â†
I (0, ω) e (24) 

ÂI (l, ω) = 

jωΔk�l sinh(pl) ˆ sinh(pl) ˆ jωΔk�l/2cosh(pl) − 
2 pl 

AI (0, ω) + jκl 
pl 

A† (0, ω) e ,(25) S 

where

p ≡ |κ|2 − (ωΔk�/2)2 . (26) 

To verify that these solution preserve free-space commutator brackets, let us define 

jωΔk�l sinh(pl) jωΔk�l/2 µ(ω) = cosh(pl) − 
2 pl 

e (27) 

sinh(pl) jωΔk�l/2ν(ω) = jκl e , (28) 
pl 

so that Eqs. (24) and (25) become 

ÂS (l, ω) = µ(ω)ÂS (0, ω) + ν(ω)Â†
I (0, ω) (29) 

ÂI (l, ω) = µ(ω)ÂI (0, ω) + ν(ω)Â†
S (0, ω). (30) 

5We have assumed that the strong, non-depleting pump is in a coherent state such that—as in 
the case of the local oscillator beam for homodyne and heterodyne detection—it acts classically in 
SPDC. 
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Now, because � � �2 
� � �2

ωΔk� κ |µ(ω)|2 − |ν(ω)|2 = cosh2(pl) + 
2p 

sinh2(pl) − 
p 

sinh2(pl) (31) 

= cosh2(pl) − sinh2(pl) = 1, (32) 

Eqs. (29) and (30) are a two-mode Bogoliubov transformation that ensures proper 
commutator preservation.6 

Gaussian-State Characterization of SPDC 

Equations (29) and (30) allow us an immediate insight into the joint state of the signal 
and idler produced by spontaneous parametric downconversion, i.e., the joint state 
of the signal and idler beams emerging from the crystal at z = l when the signal and 
idler inputs at z = 0 are in their vacuum states. In particular, the linearity of these 
equations, combined with the fact that the vacuum state is zero-mean and Gaussian, 
tells us that the signal and idler outputs will be in a zero-mean jointly Gaussian 
state. Hence they are completely characterized by their phase-insensitive and phase-
sensitive correlation functions, of which the only non-zero ones are �Â† (l, ω)ÂS (l, ω

�)�,S 

�Â†(l, ω)ÂI (l, ω
�)�, and �ÂS (l, ω)ÂI (l, ω

�)�. These correlations are easily computed, I 

e.g., for the signal’s phase-insensitive correlation function we have that 

�Â† (l, ω)ÂS (l, ω
�)�S 

= �[µ∗(ω)Â†
S (0, ω) + ν∗(ω)ÂI (0, ω)][µ(ω�)ÂS (0, ω

�) + ν(ω�)Â†
I (0, ω

�)]� (33) 

= µ∗(ω)µ(ω�)�Â†
S (0, ω)ÂS (0, ω

�)� + µ∗(ω)ν(ω�)�Â†
S(0, ω)ÂI

†(0, ω�)� 

+ ν∗(ω)µ(ω�)�ÂI (0, ω)ÂS (0, ω
�)� + ν∗(ω)ν(ω�)�ÂI (0, ω)ÂI

†(0, ω�)�. (34) 

Now, because the input fields are in their vacuum states, all their normally-ordered 
correlation functions vanish, so, using the commutator (18), we get 

�ÂI (0, ω)ÂI
†(0, ω�)� = 2πδ(ω − ω�), (35) 

whence 
�ÂS

† (l, ω)ÂS (l, ω
�)� = 2π|ν(ω)|2δ(ω − ω�). (36) 

Similar calculations yield 

�ÂI
†(l, ω)ÂI (l, ω

�)� = 2π|ν(ω)|2δ(ω − ω�), (37) 

6Our proof has assumed that p is real valued, i.e., it applies for frequencies low enough to give 
|ωΔk�/2| ≤ |κ|. At higher frquencies, where |ωΔk�/2| > |κ| prevails, p becomes imaginary, but a 
similar calculation—left to the reader—will show that Eqs. (29) and (30) still constitute a two-mode 
Bogoliubov transformation and hence commutator preserving. 
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and 
�ÂS (l, ω)ÂI (l, ω

�)� = 2πµ(ω)ν(ω)δ(ω − ω�), (38) 

for the other correlation functions that we need. 
For future use it will be valuable to find the phase-insensitive and phase-sensitive 

correlation functions for the baseband signal and idler field operators defined by 

ÊS 
(+) 

(l, t) = ÊS (t)e
−j(ωP t/2−kS (ωP /2)l) and ÊI 

(+) 
(l, t) = ÊI (t)e

−j(ωP t/2−kI (ωP /2)l). 
(39) 

Using the Fourier relations 

l)SÊS (t) = 
dω

ÂS (l, ω)e−jω(t−k�
, (40) 

2π 

IÊI (t) = 
dω

ÂI (l, ω)ejω(t+k� l) , (41) 
2π 

where 
dkS (ωP /2 + ω) 

S ≡ and kI
� ≡


dkI (ωP /2 − ω) 
dω


k� ,
 (42)

dω
 ω=0 ω=0 

together with the frequency-domain correlation functions derived above, we find that 
the non-zero correlations of the baseband field operators are stationary—dep endent 
on time-difference only—a nd given by 

(n) dω 2 jωτ KSS (τ) ≡ �ÊS
† (t + τ)ÊS (t)� =

2π 
|ν(ω)| e (43) 

(n) dω 2 jωτ KII (τ) ≡ �ÊI
†(t + τ)ÊI (t)� =

2π 
|ν(−ω)| e (44) 

(p) dω jω(τ+Δk�l)KSI (τ) ≡ �ÊS (t + τ)ÊI (t)� =
2π

µ(−ω)ν(−ω)e , (45) 

with (n) denoting the phase-insensitive (normally-ordered) auto-correlation functions 
and (p) denoting the phase-sensitive cross-correlation function. We have made all of 
these expressions employ ejωτ inverse Fourier kernels so that—in  keeping with our 
definition of noise spectral densities for real-valued classical random processes—w e 
can say that 

(n) 2 (n) 2 (p)S (ω) = |ν(ω)| , S (ω) = |ν(−ω)| , and S (ω) = µ(−ω)ν(−ω)e−jωΔk�l , (46) SS II SI 

are their corresponding spectral densities. 
Physically, S(n)

(ω)/2π is the average photon-flux per unit bilateral bandwidth (in SS 

rad/s) in the signal beam at frequency ωP /2+ω, and S(n)
(ω)/2π is the average photon-II 

flux per unit bilateral bandwidth (in rad/s) in the idler beam at frequency ωP /2 − ω. 
These functions are usually referred to as the fluorescence spectra of the signal and 
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idler, respectively. SPDC is usually performed in the regime wherein |κ|l � 1 so 
that we can employ p ≈ jω|Δk�|/2 at all relevant detunings from degeneracy, i.e., for 
all ω values of interest. As noted in Lecture 20, this low-gain condition leads to the 
following approximations for the Bogoliubov functions,7 

µ(ω) ≈ 1 and ν(ω) ≈ jκl 
sin(

ω

ω

Δ

Δ

k�
k

l/

�l/

2

2) 
ejωΔk�l/2 . (47) 

It follows that the signal and idler fluorescence spectra are equal, and given by � �2 
(n) (n) sin(ωΔk�l/2)SSS (ω) = SII (ω) ≈ |κ|2l2 

ωΔk�l/2 
. (48) 

Thus, they peak at ω = 0, i.e., frequency degeneracy, where the phase-matching 
condition is satisfied. More importantly, we see that these fluorescence spectra are 
consistent with the photon fission interpretation of SPDC, in that the signal beam’s 
fluorescence spectrum at ωP /2 + ω equals the idler beam’s fluorescence spectrum at 

The phase-sensitive cross-spectral density, S(p)
(ω), in the low-gain regime, ωP /2 − ω. SI 

is 

S(p)
(ω) ≈ jκl 

sin(

ω

ω

Δ

Δ

k�
k

l/

�l/

2

2) 
ejωΔk�l/2 . (49) SI 

We shall work further with these low-gain spectra, and their associated correlation 
functions, in Lecture 22, when we study the Hong-Ou-Mandel dip and SPDC genera­
tion of polarization-entangled photon pairs. For the rest of today’s lecture, however, 
we will turn our attention to cavity-enhanced SPDC, i.e., the optical parametric am­
plifier. 

The Doubly-Resonant Optical Parametric Amplifier 

To go beyond the low-gain regime in cw SPDC we need the optical parametric ampli­
fier (OPA), shown schematically on slide 10 as a χ(2) crystal inside an optical cavity 
formed by two mirrors. These mirrors are anti-reflection coated for the pump fre­
quency ωP , so the pump makes a single pass, from left to right, through through 
the crystal. We will assume that the mirror on the left is a perfect reflector at the 
frequency ωP /2, while the mirror on the right is lossless and highly reflecting at 
this frequency. As a result, the spontaneously generated signal and idler photons—  
resulting from frequency-degenerate downconversion in the χ(2) crystal—b ounce back 
and forth between the mirrors many times before exiting through the highly-reflecting 
mirror. This optical feedback process greatly enhances the nonlinear interaction by 
making the crystal act as though it was much longer than it is. Of course, this feed­
back is only effective when it is positive feedback, which in this case means that ωP /2 

7These approximations violate strict commutator preservation, i.e., µ(ω) 2 ν(ω) 2 = 1 is only 
satisfied to first order in |κ|. 

| | − | |
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must be a resonant frequency of the cavity, i.e., the roundtrip phase delay inside 
the cavity at frequency ωP /2 must be an integer multiple of 2π. In what follows we 
shall assume that the cavity is resonant for both the signal and idler polarizations at 
frequency ωP /2. 

Although it is possible to analyze this OPA arrangement by imposing cavity mir­
rors around the SPDC analysis we’ve given earlier in this lecture, a much simpler 
route to getting to the essential physics employs a lumped-element treatment for in­
tracavity modes that are resonant at frequency ωP /2 for both the signal and idler 
(�ix and �iy) polarizations. We shall use ÊS 

in(t) and ÊI 
in(t) to denote the vacuum-state, 

baseband field operators of the relevant signal and idler polarizations that are inci­
dent on the cavity in slide 10 from the right, while âS (t) and âI (t) will be the photon 
annihilation operators for the associated intracavity modes.8 The equations of motion 
for the OPA system then turn out to be

d 
Ein+ Γ âS (t) = GΓâI

†(t) + 
√

2Γ ˆS (t) (50) 
dt 

d 
Ein+ Γ âI (t) = GΓâ†

S (t) + 
√

2Γ ˆI (t), (51) 
dt 

where 0 < G < 1 is the normalized OPA gain9 and Γ > 0 is the linewidth of the 
signal and idler intracavity modes. Once Eqs. (50) and (51) have been solved for 
the intracavity modes as functions of the input field operators, the baseband field 
operators for the signal and idler outputs follow from 

Êout Ein Êout Ein(t) = 
√

2ΓâS (t) − ˆ (t) and (t) = 
√

2ΓâI (t) − ˆ (t). (52) S S I I 

Frequency-domain techniques—as  we used above to obtain our SPDC input-
output relations—can  be used to derive the following two-mode Bogoliubov relation 
between the Fourier transforms10 of the input and output field operators, 

ÊS 
out (Ω) = µ(Ω)ÊS 

in(Ω) + ν(Ω)ÊI 
in†(Ω) (53) 

ÊI 
out (Ω) = µ∗(Ω)ÊI 

in(Ω) + ν∗(Ω)ÊS 
in†(Ω), (54) 

where 
1 + G2 + Ω2/Γ2 

µ(Ω) (55) ≡ 
1 − G2 − Ω2/Γ2 − 2jΩ/Γ 

2G 
ν(Ω) . (56) ≡ 

1 − G2 − Ω2/Γ2 − 2jΩ/Γ 

Ein8The field operators ˆm(t) for m = S, I have the usual δ-function commutator with their adjoints, 
[Êin(t), Êm 

in†(u)] = δ(t − u) for m = S, I, while the intracavity annihilation operators ˆ (t) for m am

m = am a† = m S, I, with their S, I have the canonical commutation relation, [ˆ (t), ̂ m(t)] 1 for = 
adjoints. 

9Here, G2 = PP /PT , where PP is the pump power and PT is the threshold power, i.e., the pump 
power value for which the OPA breaks into oscillation and becomes an optical parametric oscillator. 

10Our sign convention for these transforms is ÊS (Ω) = 
� 

dt ÊS (t)ejΩt and ÊI (Ω) = 
� 

dt ÊI (t)e−jΩt . 
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It easily shown that |µ(Ω)|2 − |ν(Ω)|2 = 1 and that Eqs. (53) and (54) give rise to 
the proper commutator brackets. More importantly, Eqs.(53) and (54) are linear 
and their driving terms are vacuum-state field operators. It follows that ÊS 

out (t) and 
Êout (t) will be in a zero-mean jointly Gaussian state. Paralleling the approach used 
to find the correlation functions for spontaneous parametric downconversion, we can 
show that this jointly Gaussian state is completely characterized by the following 
spectral densities and stationary correlation functions: 

S(n) (Ω) = dτ K(n) (τ)e−jΩτ = |ν(Ω)|2 (57) mm mm

4G2 

= , for m = S, I, (58) 
(1 − G2 − Ω2/Γ2)2 + 4Ω2/Γ2 

S(p)
(Ω) = dτ K

(p)
(τ)e−jΩτ = µ∗(Ω)ν(Ω) (59) SI SI 

2G(1 + G2 + Ω2/Γ2) 
= , (60) 

(1 − G2 − Ω2/Γ2)2 + 4Ω2/Γ2 

and 

K(n) Eout†(t)Êout GΓ e−(1−G)Γ|τ | e−(1+G)Γ|τ | 

mm(τ) = � ˆm (u)� =
2 1 − G 

− 
1 + G

, for m = S, I, (61) m 

GΓ e−(1−G)Γ|τ | e−(1+G)Γ|τ |
(p)

KSI (τ) = + . (62) 
2 1 − G 1 + G 

In the next section, we will show how the preceding spectra lead to quadrature-noise 
squeezing. 

Quadrature-Noise Squeezing from an OPA 

From our previous work on two-mode parametric amplifiers, we expect that the ±45◦ 

polarizations at the output of our continuous-time OPA should exhibit quadrature-
noise squeezing. Let’s show that this is so for the +45◦ case. The baseband field 
operator for this polarization is 

Êout ÊS 
out (t) + ÊI 

out (t) 
+45(t) ≡ √

2 
. (63) 

This field operator is in a zero-mean Gaussian state whose phase-insensitive and 
phase-sensitive correlation functions are 

(n) (n) 

K(n)(τ ) E+45 
out†(t + τ)Êout KSS (τ) + KII (τ)≡ � ˆ +45(t)� = 

2 
(64) 

GΓ e−(1−G)Γ|τ | e−(1+G)Γ|τ | 
= , (65) 

2 1 − G 
− 

1 + G 
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and 
(p) (p) 

K(p)(τ) ≡ �Êout (t + τ)Êout (t)� = 
KSI (τ) + 

2 
KII (−τ) 

(66) +45 +45

GΓ e−(1−G)Γ|τ | e−(1+G)Γ|τ | 
= + , (67) 

2 1 − G 1 + G 

respectively. The spectral densities associated with these correlation functions are 

S(n)(Ω) ≡ dτ K(n)(τ)e−jΩτ = |ν(Ω)|2 (68) 

S(p)(Ω) ≡ dτ K(p)(τ)e−jΩτ = µ∗(Ω)ν(Ω). (69) 

Now, consider the balanced homodyne measurement system—sho wn on slide 11– 
Eout for detecting the θ-quadrature of ˆ

+45(t). Here we have assumed unity quantum 
efficiency photodetectors, and omitted the low-pass filter. From our continuous-time 
theory of homodyne detection we know that the photocurrent difference Δi(t) has 
statistics that are equivalent to those of the operator 

PLO 
EoutΔî(t) = 2q Re[ ˆ+45(t)e

−jθ]. (70) 
�ωP /2 

Eout Because ˆ
+45(t) is in a zero-mean, statistically-stationary Gaussian state, the homo-

dyne measurement will yield a zero-mean, stationary Gaussian random process whose 
covariance function is 

KΔiΔi(τ) ≡ �Δi(t + τ)Δi(t)� (71) 

2 PLO 
= q 

�ωP /2
{1 + K(n)(τ) + K(n)(−τ) + 2Re[K(p)(τ)e−2jθ]}. (72) 

The photocurrent-noise spectral density that will be observed using a spectrum ana­
lyzer at the homodyne system’s output is thus 

SΔiΔi(Ω) = dτ KΔiΔi(τ)e−jΩτ (73) 

= q 2 

�
P

ω
LO 

P /2
[1 + 2|ν(Ω)|2 + 2Re(µ∗(Ω)ν(Ω)e−2jθ)] (74) 

= q 2 

�
P

ω
LO 

P /2
|µ(Ω) + ν(Ω)e−2jθ|2 . (75) 

Were Êout (t) in a coherent state, this homodyne receiver’s photocurrent-noise spectral +45

density would be 
2 PLO SΔiΔi(Ω)| = q 
�ωP /2

, (76) CS 
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representing the shot-noise limit of semiclassical theory. The normalized photocurrent-
noise spectral density, 

SΔiΔi(Ω) 
= µ(Ω) + ν(Ω)e−2jθ 2 , (77) 

SΔiΔi(Ω)|
| |

CS 

contains contains phase-sensitive noise that, as shown in the left panel on slide 12, 
goes well below the shot-noise level at θ = ±π/2 for Ω = 0. As shown in the right 
panel on slide 12, the strongest quadrature-noise squeezing is limited to frequencies 
below the cavity linewidth. 

The Road Ahead 

In the next lecture we shall use the results developed today for SPDC and the OPA 
to study additional signatures of nonclassical light that can be obtained from these 
nonlinear optical systems. Of particular interest will be Hong-Ou-Mandel interferom­
etry, as it relates to the important notion of distinguishability. We will also connect 
our treatment of SPDC with the concept of a biphoton. 
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