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1 Introduction: Green’s functions

The Green’s functions is the solution of the wave equation for a point source (dipole). For scalar

problems, the wave equation is written as (ko = w,/eft):

(V2 +kg) g(r, 7)) = —0(F — 1), (1)
and the solution for an unbounded medium is:

ethko |F—7|

g(r,7") = dnfr— 7| (2)

From Maxwell’s equations in frequency domain with an e™* dependency, the wave equation
for electric field E(7) is:

V x V x E(F) — KRE(F) = iwJ (F),

=0 for source free case. (3)

Therefore, the free-space dyadic Green’s function satisfies

V xVxGF7)—kGF,7)=16(F—7), (4)

which solution is

(check using V x V x (Ig) =VVg—-V- (Vg)? and Eq. (1)).

For the use of Green’s functions in scattering problems, it is useful to express the Green’s
function in the same coordinates as the problem, which can be rectangular, cylindrical, spherical,

etc. Here we shall concentrate on the rectangular representation (Cartesian).



2 Section 2. Cartesian coordinates

2 Cartesian coordinates

2.1 Scalar Green’s function

The formulae are derived from Eq. (1) and the Fourier transform of the quantities:

g(7, ) :ﬁ /// :o dk e =) (k) (6a)
§(F — ) :ﬁ ///_ :O dk et (=) (6b)

where k = k3 + kyy + k.Z and dk = dk,dkydk..

Upon using Eq. (1), we write:

(V2 + k2) /// dk =) ¢ ///+oo ket =) (7)

Introducing the differential operator (V2 = % + aa? + %) we write:

+oo — T o= =t — +oo — Ty —
(V2 + 1) /// dk ) g(R) = /// dk (V2 + B)eP ) o(F)
JrOO — T o= =y —
= /// — ky — k2 + k3™ ) g(k)
- /// di 0 (8)

- 1
k)= .
9(k) K2+ k24 k2 — k2

from which we conclude that

Using Eq. (6a), we therefore need to evaluate the following integral:

+oo 1 o
= =/ lk‘( ,) 1
90-7) = s /// sl 15— © . (10)

Note that Eq. (10) can be integrated along one of the three axis. In remote sensing applica-

tion, the vertical axis is usually taken to be the z axis, (zy) being the transverse plane (planar

components). We therefore choose to evaluate Eq. (10) along k., and we split:

k=kpd+ky)+ k.2 =k + k2, (11a)
F=7 4+ 22, (11b)
7=7 +2'%. (11c)




We will perform the integral of Eq. (10) in the complex plane, using Cauchy’s theorem and
the Residue theorem. Before doing this, we have to be careful not to have divergent integrals.

Since we integrate in k., the condition is:

lim €% < +00. (12)
k,—o00

If we write k, as k, =k, + ik (k. € R, k) € R), we see that

e if z > 0, we have to choose k” > 0, which means that for complex plane integration, we

need to deform the contour into the upper plane.

e if z < 0, we have to choose k7 < 0, which corresponds to a deformation into the lower

plane.

In addition, we see from Eq. (10) that the integrand has a pole at

kg, =kg—ki—kl =ki— k. (13)
We therefore need to evaluate Eq. (10) via the Residue theorem.

Calculus: let us just write the integral in dk, for z > 0:
/+°° L k) L k)
——— ") =21 Res | ———5— VT
N kgz k2 — kgz

) k. — ko, ik L (FL—T) giks(2—2")
kZHka (kz - koz)(kz + koz)

_gir L ki (Fi-7) ko, (z—2)

2k, : (14)
so that
oyt X L k=) ik, (s—2") o
g(r,7) = (272 //OO dky 2o, e L) g0z , for z — 2" > 0. (15)
The treatment for z < 0 follows the same reasoning so that we write for all (z — 2’):
i B /
V(z —2') € R, g(r7, 7)) = W //_OO dk % ethL(TL=T)) gikos|e=2"| (16)

2.2 Dyadic Green’s function
From Eq. (16) and Eq. (26), we can get the dyadic Green’s functions.

Note that VV is a dyadic operator (give a dyad when applied to a scalar) and can be
exchanged with the integral sign. In addition, it only applies to the exponential terms so that

we actually need to evaluate:

Vv eﬂ;l'(Fi_Fi) eikoz|z—zl| <17)
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or, by a simple change of variables:
vv |:67:]::L'FL 6ikoz|2:| (18)
Calculus: Let us first consider z > 0 and
VV (kL gho:loly = UV f(,y, 2) . (19)
Various derivatives will be:

f(ZIZ Y,z )——kgf(x,y,z),

z Ox
ag (xaya Z) = _kxky f(x7y72)7

®|® ®|Qj

and identically for z < 0. At z = 0 however,

P kool — O [ ikes O
e =3, iko, e %\z\

0z
. o 2 5?2
= iko, {ikoz etko- 2] <&|zl> + iko, etko:l2l - y |}

= 2iko,0(z) — k‘gz etko:12l (20)

Using these results, we write:

2 k r .
882 g // kj_ Zk‘J_""J_ |:2’Lkoz(5(2’) — kgz elkozz|:|
z
— (2 )2 // dl;il eU@_-ﬂ_ . 812 // dl;JL 'Isz eil_cJ_-FJ_ eik02|2\
T o T .
= —5(77) - é // d];'L k»oz eikl~FL eikoz|z‘ . (21)
d —00

Again, all the other terms of VV applied to the integrand give —kk so that the Green’s

function becomes:

B // dl@k F 2—2} kT for 2> 0,
G(r,7) = _200) 8— U Rk . (22)
dk I——— |7 forz<0,
// ko, [ kg ]
where
k= kyd + ky§ + ko, 2, (23a)
K =kp& + kyj — ko2 . (23b)

Some notes:




1. The Dirac delta function is known as the singularity of the Green’s function and is impor-

tant in calculating the fields in the source region.

2. The different signs ensure that the integral converges for evanescent waves, i.e.

K2+ k2 > k3.

when

3. The square bracket in the expression of the Green’s functions can be expressed in terms

of superposition of TE and TM waves, as we shall see.

2.3 Superposition of TE and TM waves

Based on k, we can form an orthonormal system for TE/TM polarized waves:

kx 2 1 1
TE e k = —= = Ak _ Ak —_ Ak _ Ak ,
6( Oz) |]€X2| \/m[x Y Yy $] kp(x y Yy :C)
& Yy
~ 1 _ ]{7
ovp o

The three vectors k, h and é form an orthonormal system, in which:

T = kk + é(ko.)é(ko,) + h(ko.)h(ko.) -

After translating to the origin, we get for the dyadic Green’s functions:

5(F) i // " dk ki [é(koz)é(koz) + H(k:oz)iz(koz)] e (7=

G(T f/) — —22—2 —2 o0 0,
b — ) 1 A : ) 3
C //— g k {é( ko.)é(—ko.) + h(—koz)h(—koz)} et (=)
[eS) 0,

where

(24a)

(24b)

for z > 2/,

for z < ',

(26)

(27a)

(27h)

(Note that K, é(—ko,) and h(—ko.) form another orthonormal set of vectors about K).

2.4 Treatment of layered media

Depending upon the medium under study and the location of the source, the kernel of Eq. (26)

will have to be modified. To make it more clear, we can gather the terms in the Green’s function

relative to the source (primed coordinates) and those relative to the source.
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_ o Ak e {leko, ) e T e(ko, ) e R +lR(ko, ) €] Bko, ) e} for z > 2/,
Qi) =—2220 4 i 0z
’ ko 87 S L TN R o K[, R 30 !
%, Ak g {e(—ko.) T é(—ho,) e K7 4 {h(—ko,) K7 h(—ho,) e} for 2 < 2,
(28)

If we now consider a layered medium problem, with an arbitrary number of layers and a

source in the top region (incident wave), we write:
G(F, )i = — // Ay 7 { é(—ko,) e KT +Khh(—koz)e—“?-f’} (29)
with

1. For 2 < 2/, i=0:

Ko =é(—ko.) ™7 + RTE é(ky. ) b0z €7 (30a)
Kp =h(—ko.) €57 + RTM jy(k_ ) eko= etk (30b)

2. For region ¢, i = ¢:
Ko =Agé(ke) €™ ™ + Byé(—ky,) 5T (31a)
Ky, =Cyh(ke.) € + Dy h(—ky_) €507 (31D)
(31c)

3. For region t, i = t:
K. =TTE ¢(—k; ) 0T (32a)
Kp, =T™ fy(—k,,) e'KeT (32D)
(32¢)

where

ke, =+/kF — k2 — k2, (33a)
ke =&k, + Gky + 2k, (33b)
Ky =&ky + ik, — 2k, | (33¢)

and the coefficients Ay, By, Cp and D, are determined from the boundary conditions.

The boundary conditions apply to the tangential electric and magnetic fields. Thus, in

terms of Green’s functions, we need to satisfy the continuity of 2 x G(7,7') and 2 x V x




G(7,7). Let us write this at the interface between media (¢) and (¢ 4 1), by separating
the TE and TM components:

Agetfe® 4 Byemhez = A, ek 4 By em e (34a)
ko, |Age™=* — Bye 2| =y [Aeﬂ e*=* — Byiy eil%z] (34b)
kfz [ ikp, 2 —ik z- _ ka-l-l ikp, z —iky_ 2
—Z|Ape't=® — Bpe M| = Apypq ™% — Bypyge (34c¢)
ke | 1 keqr
ko, |Cpe™=% + Dye ™| =k, [C€+1 =% 4+ Dyyy 6_”%2] (34d)

With the conditions in the first and last layer as:

Ay=R" By=1, Co=R™ Dy=1, (35a)
A,=0, B =T"F, C,=0, D,=TT™, (35b)
Before evaluating these coefficients, we can build a recursive scheme to calculate the ampli-

tudes from region ¢ to region ¢ + 1.
For example, it is straightforward to build a propagation matrix for TE modes from Eq. (34a)

and (34b):
Apq etkze1dera =TE [ Ayeth=tde
By e thzer1det =V By e~ tk=ede (36)
A similar procedure of course applied to the TM modes:
Cri1 etkzet1deyy =TM [ Cyeth=ede
Dyyq e~ tkzer1det =V Dy e~ tk=ede (37)

In order to end up the recursive method, we have to express the reflection and transmission
coefficient in the first and last regions, respectively. We shall only illustrated this point here, as

it has been developed in previous classes.

Let us consider a plane wave incident from region 0, with its plane of incidence parallel to
the (xy) plane. All fields vectors are independent on y, so that 8% = 0 in Maxwell’s equations.

Thus, we can decompose the fields into their TE and TM components. We get in region ¢:

e TE modes:
1 0
Hy, = — — 38
lz iw,ug 0z Ly ( a)
1 0
Hy., = —F 38b
Lz iwﬂé O Ly 5 ( )

2 9
W—i_a_y +wegpie | Eoy = 0. (38¢)
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e TM modes:

1 0
Epp=—
te tweg Oz by
1 0

Bp——— 2

b iwep Ox by

2 0,
(g ) 1y =0-

For a TE wave inside the stratified medium:

Eéy :(Azeikezz + Bee—ikgzz) eikzcr:7
H,. — k‘lgz A ik, z B —iky, z\ ikgx
fz———ww( €% — Bye T "=E) et

kz (Ageikgzz 1 Bée—ikez?;) kot
Wik

HKZ =

By matching the boundary conditions, and upon using the already known notation

ek (o)
PO =R
L = poe+)
R ="
€D =T D

we get the recursive relation:

Ay 2k, [1— 1/R3(4+1)] 2tk o4y Fhe. e

B@ B RK(E-&-l) I/Rﬁ(ﬁ_t,_l) eQik(€+l)zdl + gi_i

with the limiting condition:
Ay 0

Ap
B, — =R.

By
Ezample: for a two-layer medium (¢ = 2):

_ Ro1 + Rype?ikiz(di=do) 2ik.do
= . e .
1+ RmRm@Qlklz(dl*do)

(39a)
(39b)

(39¢)

(40a)

(40D)

(40c¢)

(41a)

(41D)

(42)

(43)

(44)




