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           6.635 lecture notes

We shall here continue the treatment of multilayered media Green’s functions, starting from

the TE/TM decomposition we have presented in the previous document.

For the sake of illustration, let us consider a one layer medium with a reflection and trans-

mission region, as shown in Fig. 1.
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Figure 1: Geometry of the problem.
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We have shown before that the Green’s functions in various layers are expressed as:

G`0 =
i

8π2

∫∫

dk̄⊥
1

k0z

[

K̄e(k`z)ê(−k0z) e−iK̄·r̄′ + K̄h(k`z)ĥ(−k0z) e−iK̄·r̄′
]

, (1)

where

` = 0 , z < z′ : K̄e(k0z) = ê(−k0z) eiK̄·r̄ +RTE ê(k0z) e
ik̄·r̄ , (2a)

K̄h(k0z) = ĥ(−k0z) eiK̄·r̄ +RTM ĥ(k0z) e
ik̄·r̄ , (2b)

` = 1 : K̄e(k1z) = A ê(k1z) e
ik̄1·r̄ +B ê(−k1z) eiK̄1·r̄ , (2c)

K̄h(k1z) = C ĥ(k1z) e
ik̄1·r̄ +D ĥ(−k1z) eiK̄1·r̄ , (2d)

` = 2 : K̄e(k2z) = T TE ê(−k0z) eiK̄·r̄ , (2e)

K̄h(k2z) = T TM ĥ(−k0z) eiK̄·r̄ . (2f)
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By satisfying the boundary conditions at z = 0 and z = −d, we obtain the following system

(for TE waves, TM waves can be solved similarly):

1 +RTE =A+B (3a)

k0z
µ0

(−1 +RTE) =
k1z
µ1

(A−B) , (3b)

Ae−ik1zd +Beik1zd = T TE eik0zd , (3c)

k1z
µ1

(Ae−ik1zd −Beik1zd) = − k0z
µ0

T TEeik0zd . (3d)

Upon solving, we obtain:

RTE =
1− e2ik1zd

1 +RTE
01 RTE

10 e2ik1zd
RTE
01 , (4a)

T TE =
4ei(k1z−k0z )d

(1 + pTE01 ) (1 + pTE10 ) (1 +RTE
01 RTE

10 e2ik1zd)
. (4b)

RTM =
1− e2ik1zd

1 +RTM
01 RTM

10 e2ik1zd
RTM
01 , (5a)

T TM =
4ei(k1z−k0z )d

(1 + pTM01 ) (1 + pTM10 ) (1 +RTM
01 RTM

10 e2ik1zd)
. (5b)

A =
1− pTE10

2

1 +RTE
01 RTE

10

1 +RTE
01 RTE

10 e2ik1zd
e2ik1zd , (6a)

B =
1 +RTE

01

1 +RTE
01 RTE

10 e2ik1zd
, (6b)

C =
µ1k0
µ0k1

2RTM
10

(1 + pTM01 ) (1 +RTM
01 RTM

10 e2ik1zd)
e2ik1zd , (6c)

D =
µ1k0
µ0k1

2

(1 + pTM01 ) (1 +RTM
01 RTM

10 e2ik1zd)
. (6d)

1 Transmission line analogy for multilayered media

Let us consider a plane wave incident from region 0, with its plane of incidence parallel to the

(xz) plane. The medium it is incident upon is multilayered.

All fields vectors are independent on y, so that ∂
∂y = 0 in Maxwell’s equations. Thus, we

can decompose the electromagnetic field into TE/TM components.

We get, in region ` (for TE waves):
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E`y =[A`e
ikzz +B`e

−ikzz] eikxx , (7a)

H`x =− kz`
ωµ`

[A`e
ikzz −B`e

−ikzz] eikxx , (7b)

H`z =
kx
ωµ`

[A`e
ikzz −B`e

−ikzz] eikxx . (7c)

Following standard notation in transmission line the-

ory, we shall use here the j notation!!

From 6.630, we know that a transmission line is characterized by its length d, characteristic

impedance Z
(p)
c and wavenumber kz, as defined in Fig. 2.PSfrag replacements
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Figure 2: Transmission line circuit.

In a source-free region, the transmission line equations are written as

∂

∂z
V (p) =− jkzZ

(p)
c I(p) , (8a)

∂

∂z
I(p) =− jkz

1

Z
(p)
c

V (p) , (8b)

where p refers to the polarization (TE or TM), and

ZTE
c =

ωµ

kz
, (9a)

ZTM
c =

kz
ωε

. (9b)

The solution to Eqs. (8) is:

V (p) =A(p)e−ikzz +B(p)eikzz , (10a)

I(p) =
1

Z
(p)
c

[A(p)e−ikzz −B(p)eikzz] , (10b)

As it can be seen, there is a direct analogy between the voltage/current in a transmission

line and the components of the electric and magnetic fields. For example, referring back to

Eq. (7), we write:
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E`y =V
TE
` (z)eikxx , (11a)

H`x =− ITE` (z)eikxx . (11b)

Therefore, the problem of computing the fields in multilayered media in the spectral domain

comes down to determining the voltage/current in equivalent transmission line network. The

analogy is illustrated in Fig. 3.
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Figure 3: Transmission line analogy for horizontal electric source and vertical mag-

netic source. Other cases are obtained by duality.

The treatment of the source will not be demonstrated here and we shall just state the

final results (details can be found in the literature). Thus, depending on the source type and

orientation, different generators will have to be placed in the transmission line network. The

various cases are (magnetic sources can be obtained by duality):

Horizontal electric source current generator value: 1/2π

Vertical electric source voltage generator value: 1/2π

The algorithm is therefore as follows:

1. Write the field components in terms of voltage and current. Locate the source and obser-

vation point.

2. Compute the equivalent transmission line network. Locate the source (type and position)

and observation.

3. Starting from the source replace all the layers above and below the source by equivalent

impedances (see Fig. 4).

To do this, start with the extreme boundary conditions and propagate back to the source

using:
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Figure 4: Equivalent upper and lower impedance.

Zin(p) = Z(p)
c

Z
(p)
L + jZ

(p)
c tan(kzd)

Z
(p)
c + jZ

(p)
L tan(kzd)

. (12)

4. Using standard circuit theory, compute V (p) and I(p) at the upper and lower limits.

5. Propagate V (p) and I(p) until the observation point using

(

V2

−I2

)

=

(

cos(kzd) −jZ(p)
c sin(kzd)

−j/Z(p)
c sin(kzd) cos(kzd)

)(

V1

I1

)

. (13)

6. Get the fields in the spectral domain.

2 Coming back to the space domain: Sommerfeld integral

In the rest of these notes we come back to the i notation!!

To come back to the space domain, we need to evaluate the inverse Fourier transform. A

typical integral we have to perform is:

f(r̄) =
1

(2π)2

∫∫

dkxdky f̃(kx, ky) e
ikxx eikyy . (14)

By symmetry of the problem (x and y axis are equivalent), we can make a change of variables

and integrate one integral analytically. The proper change of variables is the following:

kx =kρ cos kφ , x =ρ cosφ , (15)

ky =kρ sin kφ , y =ρ sinφ . (16)

We can transform the exponential part as:

eikxx eikyy = ei[kρρ cos kφ cosφ+kρρ sin kφ sinφ] = eikρρ cos(kφ−φ) , (17)

so that

f(r̄) =
1

(2π)2

∫ 2π

0
dkφ

∫ ∞

0
dkρ kρ f̃(kρ, kφ) e

ikρρ cos(kφ−φ) . (18)
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By rotational symmetry, f̃(kρ, kφ) = f̃(kρ). In addition, we can expand the exponential part

using the following identity:

eikρρ cos(kφ−φ) = eiβ cos θ =
∞
∑

m=−∞

(−i)m Jm(β) e
imθ , (19)

(where β and θ have just been defined to simplify the notation in the identity and have no

connection to physical parameters).

As we can see, the exponential function is the only term depending on kφ. Performing the

integration, we get:
∫ 2π−φ

−φ
eimθ =







0 if m 6= 0 ,

2π if m = 0 .
(20)

Therefore, we end up with

f(r̄) =
1

2π

∫ ∞

0
dkρ kρ f̃(kρ) J0(kρρ) , (21)

which is known as a Sommerfeld integral.

Note however that in Eq. (7b), the kernel is function of kx also, which adds a kρ cos kφ term

in the integral, so that the integral in kφ cannot be performed exactly as shown above. However,

the generalization to this case is straightforward. Upon performing the same expansion of the

Bessel function, we see that this time the non-vanishing contribution will come from the m = 1

term (or ±1 depending on how the integral is written).

Without further details, we generalize the definition of Sommerfeld integral to the nth order

as:

Sn[f̃ ] =

∫ ∞

0
dkρJn(kρρ)k

n+1
ρ f̃(kρ) , (22)

and the transformation from spectral to spatial can be summarized as follows (where Ã is a

function of kρ only):

spectral domain space domain

G̃ = Ã G = S0[Ã]

G̃ = −ikxÃ G = − cosφS1[Ã]

G̃ = −ikyÃ G = − sinφS1[Ã]

G̃ = −k2xÃ G =
cos 2φ

ρ
S1[Ã]− cos2 φS0[k

2
ρÃ]

G̃ = −k2yÃ G = −cos 2φ

ρ
S1[Ã]− sin2 φS0[k

2
ρÃ]

G̃ = −kxkyÃ G =
sin 2φ

ρ
S1[Ã]−

1

2
sin 2φS0[k

2
ρÃ]
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3 Numerical evaluation of Sommerfeld integrals

Sommerfeld integrals are difficult (but not impossible) to evaluate for two reasons:

1. The spectral kernel can present poles (and in general does).

2. They have an oscillatory tail.

Fortunately these two problems appear in essentially two distinct regions.

3.1 Poles of the Green’s function

It can be shown (out of the scope here) that the poles of the Green’s functions are associated

with propagating waves (e.g. in single-mode regime, the Green’s function has only one pole).

Therefore, we must have at least one value of ` (the index of the region) where k`z is real, i.e.

k`z =
√

k2l − k2ρ =
√

k20ε`µ` − k2ρ (23)

must be real. Since this needs to happen in at least one layer, it yields the condition:

kρ < k0max
l

(
√
ε`µ`) , (24)

which puts an upper limit for the location of the poles. Although it can also be shown that poles

have to correspond to kρ > k0, we do not need this constraint here and we can limit ourselves

to the interval [0, k0maxl(
√
ε`µ`)].

In the lossless situation, the poles lie on the real axis, which renders the integral impossible

to evaluate as is. We therefore need to deform the contour in the complex kρ-plane:

• At infinity, convergence is ensured by Sommerfeld’s radiation condition.

• On [0, k0maxl(
√
ε`µ`)], we perform the integration over an ellipse, as shown in Fig. 5.

PSfrag replacements
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Figure 5: Contour deformation in the complex kρ-plane.
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3.2 Oscillatory tail

The problem in this case is not the divergence of the integral (it does not diverge) bu the

convergence, which is very slow because of the oscillatory behavior of the kernel. Yet, we can

apply acceleration techniques to sum the series (these acceleration techniques belong to the

family of extrapolation techniques).

For the sake of illustration, we can mention Euler’s transformation, which is one of the best

known acceleration technique:

S′
n =

Sn + Sn+1

2
, (25)

where Sn =
∑∞

i=0 ui is the partial sum (ui being the terms of the original series).

By applying the formula repeatedly, we get:

Sk+1
n =

S
(k)
n + S

(k)
n+1

2
. (26)

A direct improvement of Euler technique is to weight the partial sums and write:

S′
n =

wnSn + wn+1Sn+1

wn + wn+1
. (27)

In our specific situation, we need to evaluate integrals of the form:

S =

∫ ∞

α
f(x)dx , (28)

where α is related to k0maxl(
√
ε`µ`). In order to transform this integral in a series, we apply

the approach of “integration then summation”. Thus, we define:

ui =

∫ xi

xi−1

f(x)dx , (29a)

S =
∞
∑

i=0

ui , (29b)

Sn =
n
∑

i=0

ui . (29c)

The break points xi have to be well chosen, and may for example be chosen based on the

asymptotic behavior of f . If we refer back to Sommerfeld integrals, we can take the asymptotic

expansion of the Bessel function:

Jν(kρρ) '
√

2

πkρρ
cos(kρρ− ν

π

2
− π

4
) . (30)

Hence, the easiest/simplest choice of break points will be

xn = kρn = x0 + n
π

ρ
, (31)
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where x0 is the first break point greater than α. We will then approximate S by Sn as

Sn =

∫ xn

α
f(x)dx . (32)

The problem of Sommerfeld’s integrals is that the remainder

rn = S − Sn = −
∫ ∞

xn

f(x)dx (33)

decays slowly, so that we want to accelerate the series from which Sn is evaluated (see Eq. (29c)).

For Sommerfeld-type integrals, we write the generic form as:

I =

∫ ∞

α
g(kρρ) f(kρ) dkρ , (34)

and the partial integral as

I(n) =

∫ xn

α
g(kρρ) f(kρ) dkρ . (35)

The remainder is therefore

I − I(n) =

∫ ∞

xn

g(kρρ) f(kρ) dkρ . (36)

This integral can be expanded into an infinite series of inverse powers of ρ by integration by

part. For example, with g(kρρ) = eikρρ (which is a generic form for Sommerfeld integrals), we

can write:

I − I0(n) =
i

ρ
eianρ

[

fn +
i

ρ
f ′
n + (

i

ρ
)2f

′′

n + . . .

]

, (37)

where fn = f(xn), f
′
n = f ′(xn), etc. Note that if the right-hand side term converges (and it

does in our case), the dominant term is O(ρ−1). Yet, if we now construct

I1(n) =
fn+1I0(n) + fnI0(n+ 1)

fn + fn+1
, (38)

it appears to be a better estimate of I since the error is in O(ρ−2).

If, in addition,

f(kρ) ∼ Ckαρ e
−βkρ , (39)

we can approximate fn and fn+1 and write

I1(n) =
I0(n) + η0I0(n+ 1)

1 + η0
, (40)

where η0 = [n/(n+ 1)]α eβπ/ρ. At higher orders, a better approximation is given by:

I2(n) =
I1(n) + η1I1(n+ 1)

1 + η1
, (41)

where η1 = [(n− 1/2)/(n+ 1/2)]α−2 eβπ/ρ.

In practical applications, the parameters α and β may have to be adjusted for an optimum

convergence.

The technique presented briefly here is known as the “weighted average” method, and more

details can be found in the literature under this keyword.


