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1 Introduction

The Method of Moments (MoM) introduced in the previous lecture is widely used for solving

integral equations in the frequency domain. Yet, some attempts have been made recently at the

use of the MoM in the time domain. We shall briefly expose this approach here.

2 Time domain equations

The first step is of course to write Maxwell’s equation and all other relations (constitutive

relations and continuity) in time domain:

∇× Ē(r̄, t) = −
∂

∂t
B̄(r̄, t)− M̄(r̄, t) , ∇× H̄(r̄, t) =

∂

∂t
D̄(r̄, t) + J̄(r̄, t) , (1a)

∇ · B̄(r̄, t) = m(r̄, t) , ∇ · D̄(r̄, t) = ρ(r̄, t) , (1b)

D̄(r̄, t) = εĒ(r̄, t) , B̄(r̄, t) = µH̄(r̄, t) , (1c)

∇ · J̄(r̄, t) +
∂

∂t
ρ(r̄, t) = 0 , ∇ · M̄(r̄, t) +

∂

∂t
m(r̄, t) = 0 . (1d)

For the time-domain MoM, it is easier to work with the potentials, and make use of the

well-known “retarded potentials” theory. In view of doing this, we write the definition:

H̄(r̄, t) =
1

µ0
∇× Ā(r̄, t) (2a)

Ē(r̄, t) = −∇φ(r̄, t)−
∂

∂t
Ā(r̄, t) . (2b)

Both the vector potential Ā and the scalar potential φ satisfy the wave equation which, in

time-domain domain, writes:

∇2Ā(r̄, t)− ε0µ0
∂2

∂t2
Ā(r̄, t) = −µ0J̄(r̄, t) , (3a)

∇2φ(r̄, t)− ε0µ0
∂2

∂t2
φ(r̄, t) = −

ρ(r̄, t)

ε0
. (3b)

These potentials are linked by the time-domain Lorentz gauge:

∇ · Ā(r̄, t) + ε0µ0
∂

∂t
φ(r̄, t) = 0 . (4)
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We can defined also a time-domain Green’s function which satisfies the time-domain scalar

equation:

(∇2 −
1

c2
∂2

∂t2
)g(r̄, r̄′, t, t′) = −δ(r̄ − r̄′) δ(t− t′) , (5)

which solution is (in free-space):

g(r̄, r̄′, t, t′) =







1
4π|r̄−r̄′| δ(t− t′ − |r̄−r̄′|

c
) t > t′,

0 t < t′.
(6)

From this, the solution to the wave equation for Ā and φ can be written as:

Ā(r̄, t) =µ0

∫

V

dv′
∫ ∞

−∞
dt′J̄(r̄′, t′) g(r̄, r̄′, t, t′) = µ0

∫

V

dv′
J̄(r̄′, t−R/c)

4πR
, (7a)

φ(r̄, t) =

∫

V

dv′
ρ(r̄, t−R/c)

4πε0R
, (7b)

where R = |r̄ − r̄′|. These wave equations are known as the time retarded potentials, and

essentially say that the potential (either Ā or φ) can be calculated at a given point in space r̄

and given time t from all previous times.

From these equations, we can calculate the space-time electromagnetic fields:

H̄(r̄, t) =
1

4π

∫

dv′ ∇×
J̄(r̄′, τ)

R
, τ = t−R/c , (8a)

Ē(r̄, t) = −
1

4πε0

∫

V

dv′ ∇
ρ(r̄, τ)

R
−
µ0
4π

∫

dv′
∂

∂t

J̄(r̄′, τ)

R
. (8b)

Let us continue with the electric field first:

Ē(r̄, t) = −
1

4πε0

∫

V

dv′
[

1

R
∇ρ(r̄′, τ) + ρ(r̄′, τ)∇

1

R

]

−
µ0
4π

∫

V

dv′
1

R

∂

∂t
J̄(r̄′, τ) . (9)

At this point, we need to use the following relations:

∇R =
R̄

R
, (10a)

∇
1

R
= −

R̄

R3
, (10b)

∇ρ(r̄′, τ) =
∂

∂τ
ρ(r̄′, τ)∇τ = −

1

c
∇R

∂

∂τ
ρ(r̄′, τ) = −

1

c

R̄

R

∂

∂τ
ρ(r̄, τ) . (10c)

We can therefore continue with the electric field as:

Ē(r̄, t) =
1

4πε0

∫

dv′
[

1

c

R̄

R2

∂

∂τ
ρ(r̄′, τ) +

R̄

R3
ρ(r̄′, τ)

]

−
µ0
4π

∫

dv′
1

R

∂

∂τ
J̄(r̄′, τ)

=
1

4πε0

∫

dv′
[

1

c

∂

∂τ
ρ(r̄′, τ) +

1

R
ρ(r̄′, τ)

]

R̄

R2
−
µ0
4π

∫

dv′
1

R

∂

∂τ
J̄(r̄′, τ) . (11)
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We can perform the same type of calculations for the magnetic field using the relation

∇× J̄(r̄′, τ) = −
1

c

R̄

R
×

∂

∂τ
J̄(r̄′, τ) . (12)

We get:

H̄(r̄, t) =
1

4π

∫

dv′
[

−
1

c

R̄

R2
×

∂

∂τ
J̄(r̄′, τ)−

R̄

R3
× J̄(r̄′, τ)

]

. (13)

Upon gathering the expressions for the electric and magnetic field, we eventually get:

Ē(r̄, t) =
1

4π

∫

dv′
{[

1

c

∂

∂τ
ρ(r̄′, τ) +

1

R
ρ(r̄′, τ)

]

R̄

ε0R2
−
µ0
R

∂

∂τ
J̄(r̄′, τ)

}

(14a)

H̄(r̄, t) =
1

4π

∫

dv′
[

1

c

∂

∂τ
J̄(r̄′, τ) +

1

R
J̄(r̄′, τ)

]

×
R̄

R2
. (14b)

Upon using the boundary conditions for the electric and magnetic field, we construct the

integral equations in a standard way:

• EFIE: n̂× (Ēi + Ēscat) = 0 on PEC surface

⇒ n̂× Ēi(r̄, t) +
1

4π
n̂×

∫

ds′ [. . .] (15)

• MFIE: n̂× (H̄ i + H̄scat) = J̄s.

As we have seen before (in a previous class), this integral equation is expressed in terms

of the principal value of the integral with a 1/2 additional factor. Thus:

1

2
J̄(r̄, t) = n̂× H̄ i(r̄, t) +

1

4π
n̂× PV

∫

ds′ [. . .] (16)

For the sake of comparison, we can write the MFIE in the frequency domain and in the time

domain:

J̄(r̄) = 2n̂× H̄ i(r̄) + 2n̂× PV

∫

ds′ J̄(r̄′)×∇′g(r̄, r̄′) r̄ ∈ S , (17a)

J̄(r̄, t) = 2n̂× H̄ i(r̄) +
1

2π
n̂× PV

∫

ds′
[

1

c

∂

∂τ
J̄(r̄′, τ) +

1

R
J̄(r̄′, τ)

]

×
R̄

R2
. (17b)

Note that in the principal value, we essentially exclude the part for which R = 0. Since

τ = t − R/c and R 6= 0, we always have that τ < t. The time domain equations therefore

state that the current at location r̄ and time t is equal to a known term 2n̂ × H̄ i(r̄, t) plus a

term (integral) known from the past history of J̄ . This is the basis for solving the time domain

integral equation by iterative methods, the most well-known one being the marching-on-in-time.
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3 The marching-on-in-time technique

3.1 General equations

The integral equation can often be cast in the following form:

J̄(r̄, t) = J̄ i(r̄, t) +

∫

S

dv′
∫ τ

0
dt′ K(r̄, r̄′, t− t′) · J̄(r̄′, t′) . (18) eq.10

Note that we have a time integral also as in Eq. (
eq.10
18), J̄(r̄′, t′) has not yet been set to satisfy

any causality condition. Hence, we must then impose J̄ i(r̄, t) = 0 for t < 0, r̄ ∈ S.

In order to apply the MoM, we discretize the current both in space and in time:

J̄(r̄′, t′) =

M
∑

m′=1

N
∑

n′=0

J̄p(m
′, n′) Ps(r̄

′ − r̄m′) Pt(t
′ − tn′) , (19)

where P denotes the simple pulse function. In addition, we also apply point-matching, which

means that we take the following testing functions:

Wmn(r̄m, tn) = δ(r̄ − r̄m) δ(t− n∆t) = δ(r̄ − r̄m) δ(t− tn) , (20)

where we take ∆t = min{Rmm′/c}, Rmm′ = |r̄m − r̄′m|. The method is best illustrated on the

following example.

3.2 Example

Let us consider a 1D example governed by the following integral equation:

g(x, t) =

∫ x0

−x0

K(x, x′) f(x′, τ)dx′ , x ∈ [−x0, x0], τ = τ(x, x′, t) = t−
|x− x′|

c
. (21)

Let us chose the following expansion for f :

f(x′, τ) '

N
∑

i′=1

J
∑

j′=1

ai′j′Pi′j′(x
′, τ) , (22)

where the pulse basis functions are defined as

Pi′j′ =







1 for x′ ∈ [xi′ −
dx

2 , xi′ +
dx

2 ] and t ∈ [tj′ −
dt

2 , tj′ +
dt

2 ]

0 elsewhere.
(23)

Note that we use the definitions: xi′ = i′dx, tj′ = j′dt, and dx = cdt. In order to apply point

matching, we take the following testing functions:

wij(x, t) = δ(x− xi) δ(t− tj) . (24)
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Upon expanding and testing, we get:

g(xi, tj) = gij =

∫ x0

−x0

K(xi, x
′)

N
∑

i′=1

J
∑

j′=1

ai′j′Pi′j′(x
′, τ)δ(t− tj)

=
N
∑

i′=1

∫ (i′+ 1

2
)dx

(i′− 1

2
)dx

dx′
J
∑

j′=1

ai′j′Pi′j′(x
′, τ)K(idx, x

′)δ(t− tj) . (25)

Coming back to the definition of τ , we write (with the test and the expansion):

τ = tj −
|xi − xi′ |

c
= jdt − |i− i′|

dx
c

= (j − |i− i′|)dt , (26)

such that the coefficient ai′j′ becomes ai′,j−|i−i′|. The integral equation becomes:

gij =
N
∑

i′=1

ai′,j−|i−i′|

∫ (i′+ 1

2
)dx

(i′− 1

2
)dx

dx′K(idx, x
′) . (27)

We can define the term

Zii′ =

∫ (i′+ 1

2
)dx

(i′− 1

2
)dx

dx′K(idx, x
′) (28)

and rewrite the previous system as

gij =
N
∑

i′=1

Zii′ ai′,j−|i−i′|

= Zii aij + Zi,i−1 ai−1,j−1 + Zi,i−2 ai−2,j−2 + . . .+ Zi1 a1,j−i+1

+ Zi,i+1 ai+1,j−1 + Zi,i+2 ai+2,j−2 + . . .+ Z1,N aN,j−N+i . (29)

In this equation, only the first term involves time step j, all the others terms being at j− 1,

j − 2, . . . Therefore, we can solve for aij :

aij =
1

Zii

[

gij −
N
∑

i′=1
i′ 6=i

Zii′ ai′,j−|i−i′|

]

. (30)

The value of all aik are known for k < j, so that aij is completely specified in closed form by

those and the present value of gij . This process is known as a 1D march-on-in-time approach.

Time-domain MoM is nowadays in its early stage and, although it has been successfully

applied to various simple situations, still suffers from numerical instabilities. More work is in

progress...


