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6.642 — Continuum Electromechanics Fall 2008 

Problem Set 2 - Solutions 

Prof. Markus Zahn MIT OpenCourseWare 

Problem 1 

Prob. 2.16.5 

Gauss’ law and E = −�Φ requires that if there is no free charge 

��2Φ + �� · �Φ = 0 (1) 

For the given exponential dependence of the permittivity, the x dependence of the coefficients in this expres­
sion factors out and it again reduces to a constant coefficient expression 

∂2Φ ∂2Φ ∂2Φ ∂Φ 
+ + + 2η 

∂x2 ∂y2 ∂z2 ∂x 
= 0 (2) 

In terms of the complex amplitude forms from Table 2.16.1, Eq. 2 requires that 

d2Φ̃ dΦ̃
+ 2η − k2Φ̃ = 0 (3) 

dx2 dx 

Thus, solutions have the form exp(px) where p = −η ± λ, λ = k + η . 
2 2 

The linear combination of these that satisfies the conditions that Φ be ˜ Φ̃α and Φ̃β on the upper and lower 
surfaces respectively is as given in the problem. The displacement vector is then evaluated as 

D̃ = −�β Φ̃α e η(x+Δ) −η sinh λx + λ cosh λx 
− Φ̃β e ηx −η sinh λ(x − Δ) + λ cosh λ(x − Δ) 

(4) 
sinh λΔ sinh λΔ 

Evaluation of this expression at the respective surfaces then gives the transfer relations summarized in the 
problem. 

Problem 2 

Prob. 4.3.3 

Figure 1: Force per unit area on middle charged surface (c/d) is found using the Maxwell stress tensor (Image 
by MIT OpenCourseWare.) 

1 

Courtesy of James R. Melcher. Used with permission. Solution to problem 2.16.5 in 
Melcher, James. Solutions Manual for Continuum Electromechanics. 1982, p. 2.28. 

Courtesy of James R. Melcher. Used with permission. Solution to problem 4.3.3 in 
Melcher, James. Solutions Manual for Continuum Electromechanics. 1982, pp. 4.3-4.4.



� � � � � � 

� � � � � � 

� � 

Problem Set 2 6.642, Fall 2008 

With positions as designated in the sketch, the total force per unit area is


1

< fz >z =< Dx

cEz
c − Dx

dEz
d >z = x z x z�(D̃c Ẽc∗ − D̃dẼd∗) (5) 

2 

With the understanding that the surface charge on the sheet is a given quantity, boundary conditions 
reflecting the continuity of tangential electric field at the three surfaces and that Gauss’ law be satisfied 
through the sheet are 

Φ̃a given; Φ̃b given; Φ̃c = Φ̃d; D̃x
c − D̃x

d = σ̃f given (6) 

Bulk relations are given by Table 2.16.1. In the upper region 

D̃a − coth kd 1 Φ̃a 
x = �0k 1 

sinh kd (7) 
D̃x

c − sinh kd 
coth kd Φ̃c 

and in the lower 

D̃d − coth kd 1 Φ̃d 

˜
x = �0k 1 

sinh kd 
˜ (8) 

Dx
b − sinh kd 

coth kd Φb 

In view of Eq. 6, Eq. 5 becomes 

1 
< fz >z = �[−jkσ̃f Φ̃c∗] (9) 

2 

so what is now required is the amplitude Φ̃c . The surface charge, given by Eq. 6, as the difference D̃x
c − D̃x

d , 
follows in terms of the potentials from taking the difference of Eqs. 7 (second row) and 8 (first row). The 
resulting expression is solved for 

Φ̃c = 
σ̃f 

+ 
Φ̃a + Φ̃b 

(10) 
2�0k coth kd 2 cosh kd 

Substituted into Eq. 9 (where the self terms in σ̃f σ̃f 
∗ are imaginary and can therefore be dropped) the force 

is expressed in terms of the given excitations 

1 Φ̃a∗ + Φ̃b∗ 

< fz >z = k� −jσ̃f (11) 
2 2 cosh kd 

b) 

Translation of the given excitations into complex amplitudes gives 

σ̃f = −σ0e
jωtejkδ , Φ̃a = V0e

jωt , Φ̃b = ±V0e
jωt (12) 

Thus, with the even excitation, where Φa = Φb 

kV0σ0
< fz >z = − sin kδ (13) 

2 cosh kd 

and with the odd excitation, < fz >z = 0. 

c) 

This is a specific case from part (b) with ω = 0 and δ = λ/4. Thus, 

kV0σ0
< fz >z = − (14) 

2 cosh kd 

The sign is consistent with the sketch of charge distribution on the sheet and electric field due to the potentials 
on the walls sketched. 

2 
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Figure 2: Potentials Φa = Φb = −V0 cos kz shown with surface charge σf = σ0 sin kz (Image by MIT 
OpenCourseWare.) 

Problem 3 (Zahn, Problem 23, Chapter 1) 

a) 

Cartesian Cylindrical Spherical

hx = 1 hr = 1 hr = 1

hy = 1 hφ = r hθ = r

hz = 1 hz = 1 hφ = r sin θ


b) 

∂f ∂f ∂f 
df = du + dv + dw 

∂u ∂v ∂w


= �f · d�


= �f · [huduīu + hvdvīv + hwdwīw]


1 ∂f 1 ∂f 1 ∂f

;	 (�f)v = ;	 (�f)w =(�f)u = 

hu ∂u hv ∂v hw ∂w


1 ∂f 1 ∂f 1 ∂f

�f = ¯ ¯ ¯iu + iv + iw

hu ∂u hv ∂v hw ∂w 

c) 

dSu = hvhwdvdw; dSv = huhwdudw; dSw = huhvdudv 

dV	 = huhvhwdudvdw 

d) 

Divergence 

¯Φ = A · dS = Auhvhwdvdw − Auhvhwdvdw

S 1,u 1�,u−Δu


+	 Avhuhwdudw − Avhuhwdudw

2,v+Δv 2�,v


3 
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+	 Awhuhvdudv − Awhuhvdudv

3,w+Δw 3�,w


Auhvhw|u − Auhvhw|u−Δu Avhuhw|v+Δv − Avhuhw|v Awhuhv|w+Δw − Awhuhv|w 
= + +	 ΔuΔvΔw 

Δu Δv	 Δw 

¯ ¯A · dS A · dS 
� · Ā = lim S = S 

Δu→0,Δv→0,Δw→0 ΔV huhvhwΔuΔvΔw 

1 ∂(hvhwAu) ∂(huhwAv) ∂(huhvAw) 
=	 + + 

huhvhw ∂u ∂v ∂w 

Figure 3: Contour for determining (�× Ā)u (Image by MIT OpenCourseWare.) 

Curl 

Ā · d� 
(�× Ā)u = lim L 

Δv→0,Δw→0 hvhwΔvΔw 

Ā · d� = [AvhvΔv|w − AvhvΔv|w+Δw] + [AwhwΔw|v+Δv − AwhwΔw|v]

L


(�× Ā)u = lim 
1 Avhv|w − Avhv|w+Δw 

+ 
Awhw|v+Δv − Awhw|v 

Δv→0,Δw→0 hvhw Δw Δv 

1 ∂(hwAw) ∂(hvAv) 
=	 − 

hvhw ∂v ∂w 

Similarly 

(�× Ā)v =
1 ∂(huAu)

− 
∂(hwAw)


huhw ∂w ∂u


(�× Ā)w =
1 ∂(hvAv)

− 
∂(huAu)


huhv ∂u ∂v


e) 
� � � � � � �� 

�2f = � · (�f) = 
1 ∂ hvhw ∂f ∂ huhw ∂f 

+ 
∂ huhv ∂f 

+ 
huhvhw ∂u hu ∂u ∂v hv ∂v ∂w hw ∂w 
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