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6.642 — Continuum Electromechanics Fall 2008
Problem Set 2 - Solutions

Prof. Markus Zahn MIT OpenCourseWare
Problem 1
Prob. 2.16.5
Gauss’ law and E = —V® requires that if there is no free charge
eV2® + Ve VO =0 (1)

For the given exponential dependence of the permittivity, the  dependence of the coefficients in this expres-
sion factors out and it again reduces to a constant coefficient expression

2 9?0 9P 0P

8w2+6 +a2+na =0 (2)

In terms of the complex amplitude forms from Table 2.16.1, Eq. 2l requires that
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Thus, solutions have the form exp(pz) where p = —n+ X\, A = \/Lc_—‘,—_r#
The linear combination of these that satisfies the conditions that P be d> and ®° on the upper and lower

surfaces respectively is as given in the problem. The displacement vector is then evaluated as

(4)

D= e, {Ci)“e”(“'m —nsinh Az + Acosh Az 6 ne 11 sinh A(z — A) + Acosh A(z — A) }

sinh AA sinh AA
Evaluation of this expression at the respective surfaces then gives the transfer relations summarized in the

problem.
Courtesy of James R. Melcher. Used with permission. Solution to problem 2.16.5in

Melcher, James. Solutions Manual for Continuum Electromechanics. 1982, p. 2.28.

Problem 2
Prob. 4.3.3
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Figure 1: Force per unit area on middle charged surface (c¢/d) is found using the Maxwell stress tensor (Image
by MIT OpenCourseWare.)

Courtesy of James R. Melcher. Used with permission. Solution to problem 4.3.3in
Melcher, James. Solutions Manual for Continuum Electromechanics. 1982, pp. 4.3-4.4.
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With positions as designated in the sketch, the total force per unit area is
1 MC TCx Md rhd*
< f.>.,=< DSES - DIE? > = SR(DIES — DIE®) (5)

With the understanding that the surface charge on the sheet is a given quantity, boundary conditions
reflecting the continuity of tangential electric field at the three surfaces and that Gauss’ law be satisfied
through the sheet are

P given; @ given; @° =% D¢ — DY =5 given (6)
Bulk relations are given by Table 2.16.1. In the upper region
[ D2 T [ —cothkd L 1[ @]
_ T = sinh kd -
L DS | ok | —wmga  cothkd || @° | @)
and in the lower
[ D] [ —cothkd == IR
T — sinh kd -
L D:IJZ’ J EOk _sinlllkd coth kd 1L (Pb J (8)
In view of Eq. [6] Eq. Bl becomes
1 -
< fo>.= 58‘%[—[7‘14;@(1)0*] (9)

so what is now required is the amplitude ®¢. The surface charge, given by Eq.[6] as the difference [); — [)g,
follows in terms of the potentials from taking the difference of Egs. [ (second row) and [§ (first row). The
resulting expression is solved for

(ic o 6’f (ia + (ib
"~ 2¢okcothkd = 2cosh kd

(10)
Substituted into Eq. [0 (where the self terms in & f0% are imaginary and can therefore be dropped) the force
is expressed in terms of the given excitations

1 i)a* i)b*
< fo>a= 5ER [ i (11)

I 2 cosh kd

b)
Translation of the given excitations into complex amplitudes gives

of = —goe?teI® B = Vel B = £V, eIt (12)
Thus, with the even excitation, where ®* = ®°

716‘/000 in
2 cosh kd °
and with the odd excitation, < f, >,=0.

c)
This is a specific case from part (b) with w =0 and § = A/4. Thus,
__kVooo

2 cosh kd

The sign is consistent with the sketch of charge distribution on the sheet and electric field due to the potentials
on the walls sketched.

< fr>.=— ko (13)

< f.>.= (14)
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Figure 2: Potentials &, = ®, = —Vjcoskz shown with surface charge oy = opsinkz (Image by MIT
OpenCourseWare.)

Problem 3 (Zahn, Problem 23, Chapter 1)

a)
Cartesian Cylindrical ~ Spherical
hl’:]- }erl hT:]-
hy =1 he =1 hg=r
h,=1 h,=1 he =rsind
b)
_of of | of
df = %du + %dv + 8wdw
=Vf-dl
= V[ [huduiy + hydvi, + hy,dwiy)
_1of 1 of 1 of
(vf)’ll« - H%’ (vf)v - hq} 81}7 (vf)w - hu; aw
1 of- 1 0f- 1 0f-
V= he 8uZu * hy 811% + h 8wzw
c)
dS, = hyhydvdw; dS, = hyhwdudw; dS,, = hyh,dudv
dV = hyhyhdudvdw
d)
Divergence
b = 7{ A-dS = Ayhyhydodw — / Ay hyhydvodw
S 1,u 1 u—Au
+/ Ayhyhydudw — Ayhyhydudw
2,0+Av 2/ v
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Figure 3: Contour for determining (V x A), (Image by MIT OpenCourseWare.)

(Vx A), = lim fA-de
x )u o Av—0, AwﬂO h h AvAw

]{ A-dl = [Avthv|w - AvthU‘w—Q—Aw] + [Awthw‘v—&-Av - AwthwLu}
L
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