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6.642 — Continuum Electromechanics Fall 2008 

Problem Set 5 - Solutions 

Prof. Markus Zahn MIT OpenCourseWare 

Problem 7.6.3 

Mass conservation requries that 
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With the pressure outside the bubbles defined as p0, the pressure inside the respective bubbles are 

2γ 2γ 
pa − p0 = ; pb − p0 = (2) 

ξ1 ξ2 

so that the pressure difference driving fluid between the bubbles once the valve is opened is 

1 1 
pa − pb = 2γ − . (3) 

ξ1 ξ2 

The flow rate between bubbles given by differentiating Eq. 1 is then equal to Qv and hence to the given 
expression for the pressure drop through the connecting tubing. 
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Thus, the combination of Eqs. 1 and 4 give a first order differential equation describing the evolution of ξ1 

or ξ2. In normalized terms, that expression is 
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where 
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ξ1 = ||ξ1||ξ0, t = t 
R4γ 

Thus, the velocity is a function of ξ1, and can be pictured as shown in the figure. It is therefore evident 
that if ξ1 increases slightly, it will tend to further increase. The static equilibrium at ξ1 = ξ0 is unstable. 
Physically this results from the fact that γ is constant. As the radius of curvature of a bubble decreases, 
the pressure increases and forces the air into the other bubble. Note that this is not what would be found if 
the bubbles were replaced by most elastic membranes. The example is useful for giving a reminder of what 
is implied by the concept of a surface tension. Of course, if the bubble can not be modelled as a layer of 
liquid with interior and exterior interfaces comprised of the same material, then the basic law may not apply. 
In the figure, note that all variables are normalized. The asymptote comes at the radius where the second 
bubble has completely collapsed. 
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Figure 1: Bubble velocity versus bubble displacement from Eq. (5) (Image by MIT OpenCourseWare.) 
Courtesy of James R. Melcher. Used with permission.

Solution to Problem 7.6.3 in Solutions Manual for Continuum Electromechanics, 1982, pp. 7.3-7.4 


Problem 3.10.3 

(a) 

The magnetic field is “trapped” in the region between tubes. For an infinitely long pair of coaxial conductors, 
the field in the annulus is uniform. Hence, because the total flux πa2B0 must be constant over the length of 
the system, in the lower region 

a2B0
Bz = (6) 

a2 − b2 

(b) 

The distribution of surface current is as sketched below. It is determined by the condition that the magnetic 
flux at the extremities be as found in (a) and by the condition that the normal flux density on any of the 
perfectly conducting surfaces vanish. 

(c) 

Using the surface force density K× < B >, it is reasonable to expect the net magnetic force in the z direction 
to be downward. 

(d) 

One way to find the net force is to enclose the “blob” by the control volume shown in the figure and integrate 
the stress tensor over the enclosing surface. 

fz = Tzj nj da

S


Contributions to this integration over surfaces (4) and (2) (the walls of the inner and outer tubes which 
are perfectly conducting) vanish because there is no shear stress on a perfectly conducting surface. Surface 
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Figure 2: Magnetic field lines and stress tensor enclosing surface (dashed) (Image by MIT OpenCourseWare.) 

(5) cuts under the “blob” and hence sustains no magnetic stress. Hence, only surfaces (1) and (3) make 
contributions, and on them the magnetic flux density is given and uniform. Hence, the net force is 

fz = πa2 

� 

B2 � 

B
0
2a4 πa2B2 b2 

0 0− π(a 2 − b2) = − . (7) 
2µ0 2µ0(a2 − b2)2 2µ0 a2 − b2 

Note that, as expected, this force is negative. 
Courtesy of James R. Melcher. Used with permission.

Solution to Problem 3.10.3 in Solutions Manual for Continuum Electromechanics, 1982, p. 3.7.


Problem 3.10.4 

The electric field is sketched in the figure. The force on the cap should be upward. To find this force use the 
surface S shown to enclose the cap. On S1 the field is zero. On S2 and S3 the electric shear stress is zero 
because it is an equi-potential and hence can support no tangential E. On S4 the field is zero. Finally, on 
S5 the field is that of infinite coaxial conductors. 

V0 1 
E = ir � 

a 
� . (8) 
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b 

Thus, the normal electric stress is 

Tzz = − 
�0 

Er 
2 = − 

1 �0V0
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, (9) 
2 2 ln2 � a 

� 

2r
b 

and the integral for the total force reduces to 

a V 2�02π a πV 2�0
fz = Tzj nj da = − Tzz2πrdr = 0 

a 
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0 
a 
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Figure 3: Electric field lines and stress tensor enclosing surface (dashed) (Image by MIT OpenCourseWare.) 
Courtesy of James R. Melcher. Used with permission.

Solution to Problem 3.10.4 in Solutions Manual for Continuum Electromechanics, 1982, p. 3.8.


Problem 4 

(a) 

From the results of problem 12.2, we have that the pressure p, acting just to the left of the piston, is 

µ0I
2 

p = . (11) 
2w2 

The exit velocity at each orifice is obtained by using Bernoulli’s law just to the left of the piston and at 
either orifice, from which we obtain 

1 

µ0 
2 I 

V = (12) 
ρ w 

at each orifice. 

(b) 

The thrust is 

dM 
T = 2V = 2V 2ρdw. (13) 

dt 

2µ0I
2d 

T = . (14) 
w 
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(c) 

In the steady state, we choose to integrate the momentum theorem, Eq. (12.1.29), around a rectangular 
surface, enclosing the system for −L ≤ x1 ≤ +L. 

−ρV
0

2 a + ρ[V (L)]2b = p0a − p(L)b + F, (15) 

where F is the x1 component force per unit length which the walls exert on the fluid. We see that there is 
no x1 component of force from the upper wall, therefore F is the force purely from the lower wall. 

In the steady state, conservation of mass, (Eq. 12.1.8), yields 

a 
V (�) = V0 i1. (16) 

b 

Bernoulli’s equation gives us 

1 
2 1 

2 a 2 

ρV
0 + p0 = ρV

0 + P (L). (17) 
2 2 b2 

Solving (17) for P (L), and then substituting this result and that of (16) into (15), we finally obtain 

b a2 

F = P0(b − a) + ρV
0

2 −a + + . (18) 
2 2b 

The problem asked for the force on the lower wall, which is just the negative of F . Thus 

a2 b 
Fwall = −P0(b − a) − ρV

0

2 −a + + . (19) 
2b 2 

Courtesy of Herbert H. Woodson, James R. Melcher, and Markus Zahn. Used with permission.

Solutions to Problems 12.3 and 12.4 in Solutions Manual for Electromechanical Dynamics, vol. 3, pp. 28-29.
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