Recelving Properties of Antennas

Open-circuit voltage of short dipole antennas

For d << A, quasistatic limit
Note that equipotentials (a) and (b) intercept the dipole at the
midpoints forr,. . — 0, and are perpendicular.
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Equivalent circuit for short dipole antennas
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Avalilable power from a short dipole antenna
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Proof that A = GA?%/4r for all reciprocal antennas

—Zl. where Z< S
]

Impedance matrix for imbedded N-port

. . T
Reciprocity appliesif u =u,
|[Excludes ferrites, magnetized plasmas, etc.]

(Reference: Op. Cit., p.454)




Proof that A = GA?%/4r for all reciprocal antennas

Power received by antennas 1 and 2:

I:)rl - Z12|22/8Rr1
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Proof that A = GA?%/4r for all reciprocal antennas

Power received by antennas 1 and 2:
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Example: A for short dipole

2 32 () I
A /G4Tc 8 (3j # f(dg ) o

max
< 3/2 if matched

.Y £ T —

e.g. A=300m @ 1 MHz, yetd =1 m on car
e.g. cell phone @ 900 MHz > A =30cm,d=15cm

Note: A can be much larger than physical antenna when
the load is roughly impedance matched, but this match
may provide excessively narrow bandwidth Ao = ]/ R.Cq




Multi-conductor wire antennas
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Multi-conductor wire antennas
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Recall:
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Pscat = ‘MTh‘ /2Rr = Sinc ® Ascat Sinc = ‘E‘ /Zno (Wm 2)

Therefore Agcat = 4Amatched < 302/2n (for short dipoles)
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Scattering from a half-wave dipole

R =73Q,G<1.64, X=0 because W,=zW,_,
Most EM energy (W =W, + W_ =2W,_ ) is stored
within a few wire radii

Orbiting A/2 needles
for passive satellite

communications link
(artificial ionosphere)




Scattering from parasitic antenna elements
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Phase control in i1solated wires
(0

=L V=1Z=I(R+Ls+1/Cs)=1ze!z

Z =R+ jXq(o—0g)for o= o,
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Control phase ¢ in wire by:
reducing o, — 0° < ¢ < 90° (lengthen wire)
Increasing o, — -90° < ¢ < 0° (shortening wire)
Increase Q and o¢/0w by increasing W5 (thinning the wire)
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Directivity of parasitic wire antennas

<— short circuit /4 away, so l> = -l and radiated fields cancel

— A << A2m

. P (forward power
open circuit y Pr( |2p:|1 )

Reflectors: - s /~reality
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< D> “reflector” is parasitic resonant dipole
¢ o A2 long (note: reflects at all D)

Directors:

If d = A2, then =0
If D, > Pg = 0 and P # 0O, then parasitic element is “director”




Multiple parasitic wires, Yagi antenna

Choice of d;, D;, (i = 1, ...N) originally was an art. Now
computers can optimize chosen specifications (e.g.
bandwidth, reactance, directivity)
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Half-wave folded dipole antenna

| L Ig
! (z) TEM line
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V(z)

Therefore ltgpm =0 atall z,
and lA = lB

< TEM parallel-wire line
T

Equivalent to:
P, = I(Z)Rro /2 (single dipole)

<D =

Pt = (2o )Ry, /2= 23R, (folded dipole)

Therefore R, =4R, =300Q
I =l T 0

IA
Half - wave dipole R, =73Q
“Half-wave folded dipole” POIE Rrg




Half-wave folded dipole antenna

Cross-section of TEM “twin lead” line:

“TEM” mode Common mode

[Eseeslessg)
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Cu wire
CTEM < Ccommon mode and Vv = ]/\/ HE, SO Acommon > ATEM

Therefore .

A2 for common mode —| o A/2 for TEM mode
to radiate o to force I, = Ig




A Balun couples balanced to unbalanced systems

e.g., this is okay Suppose we want:

mirror 7, _mirror
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But current will flow down the
mirror outside of C instead of into B
D
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Conductors C and D form A/4 TEM line shorted at the mirror,
yielding an open circuit at coax end, forcing current into




Helical antenna
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If L >> D, standing wave at end Is
small because of radiation losses.
Assume ~ TEM propagation
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Helical antenna
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Long helices have weaker standing waves (less current at end)




Log-periodic antennas

resonant at f

2 /active part of antenna at f_(d = A/2)
. (moves with frequency)
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long elements " Too short to matter, has
not excited, a reactive effect.
due to

radiation Pattern, impedance
losses = f(f) (approximately)
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