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Multi-Phase-Shift Keying, “MPSK”

BPSK: Binary Phase-Shift Keying QPSK: Quadrature Phase-Shift Keying
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QPSK is bandwidth efficient,
but has little E/N, penalty.
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Error Probabillities for Binary Signaling

Matched filter reception of unipolar
baseband, coherent OOK or coherent FSK

—Q L«/ = /N(J

E = average energy per limit

Matched filter
reception of
bipolar baseband,

BPSK or QPSKJ
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Source: Digital and Analog Communication Systems,
L.W. Couch Il, (4th Edition), Page 351
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Phasor Diagrams

S(t) = Re{Se"}
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Intersymbol Interference

MPSK Examples:
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Want symbols to be orthogonal
within and between windows
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Performance Degradation Due to Interchannel Interfence

N = 1 Interfering Channel
10 N =
Signal degradation “Tamed FM” (window overlap)
(dB) same as required 4 ( JBoxcar (QPSK)
\

signal boost for _
constant P, /Channel spacing (Hz)
0.1 Af/lﬁ for given E/N,
0 051 2 BPS

Closer channel spacing requires more signal power to maintain P,
Recover by boosting signal power (works until N, becomes negligible)

BER
107 “Tamed FM”

BER N = o Interfering Channels
(for a given E/N,) N =

10°® L\ L AfR
0.4 0.5 0.6 0.7
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Error Reduction via Channel Coding

Shannon’s Channel Capacity Theorem
We want P, — 0 (banking, etc.) = E/N_, — oo using prior methods

Theorem: P, — 0 if channel capacity “C” not exceeded, in bits/sec

C = B LOG,(1 + S/N) bits/sec

[Hz] Noise Power = N_B

Average Signal Power

(Shannon showed “can,” not “how”)

Examples: S/N = 10 yields C = 3B (3 bits/Hz), S/N = gj yields C = 7B (7 bits/Hz)

~21 dB
e.g. 3-kHz phone at 9600 bps requires S/N > 10 dB
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Channel Codes

Definitions:

1. “Channel codes” reduce P,
2. “Source codes” reduce redundancy

3. “Cryptographic” codes conceal

Solomon Golomb: A message with content and clarity
has gotten to be quite a rarity;
to combat the terror of serious error,
use bits of appropriate parity.
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Coding Delays Message and Increases Bandwidth

~TKCR) T

Can show: P_< 2 = time delay in coding process

e.g. use M = 2% possible messages in T sec.
(RT = #bits In T sec; “block coding”)

use M = 27" frequencies spaced at ~1/T Hz

then B = 2%"/T (can — «!)
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Minimum S/N, for P, - 0
Canshow : C_, 21imC = S/(Ng In2) > R(Ps—>0) bits/sec

Therefore

Typically 2 <M < 64

:/OozlogzM

0.1 f
6

M=2

SN (J/bit) M = number of
> | (W/Hz) frequencies
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Error Detection K + R Code

Blocks: message check bits

g J
Y Y

K bits R bits

-
even

Simple parity check — xxx..x P whereP>X 1's=<or (2 standards)
' odd
&

Kbits R=1hit

l.e. = A single bit error transforms its block to “illegal” message set
(half are illegal here).
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Error Correction Code

Message = m; m,...my Checks =my,,....my ,

Any of these K + R bits can be erroneous

Receive: m,
Correct: m,

Sum (modulo 2) = 0’'s if no error —» 0O

Consider locations of “1”"s in K + R slots of Sum

If we wish to detect and correct O or 1 bit error in the block of K + R bits,
we need K+R2>=K+LOG, (K+ R+ 1) bits/block
— ——
Original i
Information |
Number of “No Error”
Slots for Message
1-bit error
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Single-Bit Error Correction

If we wish to detect and correct O or 1 bit error in the block of K + R bits,
weneed K+R>K+LOG, (K+R + 1) bits/block

N
Original |
Information |
Number of “No Error”
Slots for Message
1-bit error

R/(R +K)

0.67 ) |
0.6 R = Check bhits needed

05 - Not too to detect and fix < 1 error
0.4 efficient in a block of K + R

0.4
0.07
0.01
0.002
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Two-Bit Error Correction

If we wish to correct two errors:

(K+R)(K+R-1)
Weneed K+R2>2K+LOG,1+K+R+
S 2 Y

<

[ — i
“No Error” 1 Error 2 Errors
Message

R/(R +K)

0.6 R = Check bits needed
0.02 to detect and fix < 2 errors
In a block of K + R bits

0.004
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Implementation: Single-Error Correction

Bloc:ké [ml m, m; m, C, C, CS}
(K=4,R=3) (4 message bits, 3 check bits)

Let Clémleamz@m3 D
0

Czéml@mz@m4 C3ém1€am3€am4 1 ‘

J

0
0
1
.

“Sum, modulo-2”

(Note: Cl@Clé m, &m, ®m,® C, =0)
Truth Table

Modulo-2 |1 1
matrix |1 1
multiply [1 O

-

If no errors

(Note:m; ®m, ® m; =C,)

HQ = 0 defines legal codewords Q
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Implementation: Single-Error Correction

HQ = 0 defines legal codewords Q

Only 1/8 of all 7-bit words are legal because C,, C,, and C, are each
correct only half the time and (0.5)° = 1/8

Suppose transmitted Q is legal and received R = Q + E then H + HE
PP Q g Q \_% Ha’
-+

_ !
Interpret to yield error-free Q from R

- 1
=| 0 | = Error in m; |Note that H; = }
. 1

Can even rearrange transmitted word so:
o 0 0 1 1 1 1
1

= E = Binary representation

0O 1 O O 1
1 0 1 0 1 1 of error location “L”
L=1 2 3 4 5 7
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P. Benefits of Channel Coding

Suppose P, = 10, then P{error in 4-bit word} = 1 — (1 10°)* =2 4 x 10°

~— (no-coding case)
P{no errors}

If we add 3 bits to block (4 + 3 = 7) for single-error correction,

and send it in the same time = % less E/N, (2.4 dB loss)

P, — 6 x 10 (per bit; depends on modulation)

;JESX 10°°

—
(6 x 10*)°7 . g/21

Compare new p{block error} 8 x 10° to 4 x 10™ without coding

2 errors in 7 bits @ 6 x 10™ = p{no error}’ « p{error}* [
p{ }=p{ }" * p{error}

Alternatively, reduce power and maintain P,
Benefits depend on P,(E/N,) relation
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Benefits of Soft Decisions

Soft decisions can yield ~2 dB SNR improvement for same P,

v

€.g. ‘Hard Decision:” 2 Alternatives

A'B'C D'E'F' G\H “Soft Decision:”
Say 8 Levels

Example: Parity bit implies one of n bits was received
iIncorrectly. Choose the one bit for which the
decision was least clear.
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Convolutional Codes

_ Convolutional codes
Constraint employ overlapping
Length blocks (sliding window)

Example:

R (bits/sec) In - J°o—° 2R bits/sec output

3-bit shift register/

\“ Sum modulo 2
This Is a “rate 1/2, constraint-length-3 convolutional coder”

One advantage. accommodates soft decisions

Here each message bit impacts 3 output bits and therefore
Impacts decoder decisions impacting 3 or more reconstructed
bits, so soft decisions help identify erroneous bits.
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Rayleigh Fading Channels

e.g. Fading from deep vigorous multipath (’r % )

N
Consider multipath with output signal z(t) = Z X; COS ot + Y; Sin ot

(sum of N phasors, one per path) =l
Im{z} 72 (t)(filtered)

1 -

Z 7 ~i=1 | '\Deep Fatde

0 Re{z} 0

Rayleigh fading: x; and y; are independent g.r.v.z.m.
Im{z} P{lzl}

Oh Re{z}
Z
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Rayleigh Fading Channels

Rayleigh fading: x; and y; are independent g.r.v.z.m.

Im{z}

}g Re{z}

Z

Variance of Re{z}, Im{z} = G

{|z oV m/2

({|Z (2 — 7/2)
V[ 2613 = f(N)

e—(ZO/G)Z/Z

P
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Effect of Fading on P_(E,/N,)

P, curve increases and flattens when there is fading

New P_{E,/N,} Relation
After Fading

X

E,/N,(dB)

p{Eb/No}
E,(t)
} Fading history,

Deep fades produce ] increases P(t)
bursts of errors : f

(error clusters)
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Remedies for Error Bursts

. Diversity — Space
— Frequency
— Polarization

. General error-correcting codes

. Same, plus interleaving: f Error burst, hits only,

one bit per block

I

Burst hits fewer
bits per block |

. Reed-Solomon codes
(Tolerate adjacent errors better than random ones)
e.g. multivalue symbols A (say 4 bits each, 16 possibllities)
so then block error-correct the symbols A:
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Remedies for Error Bursts

Fading flattens P,(E,/N,) curve, so potential coding gain
can exceed 10 dB sometimes

Increase in E, required to accommodate coding
New P, for coded fading channel

— Reduction in P, using coding

Flatter P_(E,/N,) for
fading channel
\ A PN
|

Coding Gain

E/N, (dB)
10 dB

Note: Coding gain greater for flatter P (E,/N,)



