Wave-Based Surveillance

Professor David H. Staelin Massachusetts Institute of Technology

Antenna Aperture Transform Relations and Resolution

Define angular spectrum $\overline{\underline{E}} \Big(\phi_x, \phi_y \Big)$ for incoming monochromatic signals

Not to be confused with the radially expanding and diminishing waves characterized by $\overline{E}(\theta, \phi, R)$

$$\underline{\underline{E}}(x,y) \cong \int_{4\pi} \underline{\underline{E}}(\phi_x, \phi_y) e^{+j\frac{2\pi}{\lambda}(x\phi_x + y\phi_y)} d\Omega$$
[aperture]
$$[vm^{-1}ster^{-1}]$$

$$\underline{\overline{E}}\left(\phi_{x},\phi_{y}\right) \cong \frac{1}{\lambda^{2}} \int_{A} \underline{\overline{E}}\left(x,y\right) e^{-j\frac{2\pi}{\lambda}\left(x\phi_{x}+y\phi_{y}\right)} dxdy \left(\text{For } \phi_{x},\,\phi_{y} << \frac{\pi}{2}\right)$$

Equivalently we let $x/\lambda \stackrel{\triangle}{=} x_{\lambda}$; $y/\lambda \stackrel{\triangle}{=} y_{\lambda}$

Antenna Aperture Transform Relations and Resolution

Equivalently we let
$$x/\lambda \stackrel{\Delta}{=} x_{\lambda}$$
; $y/\lambda \stackrel{\Delta}{=} y_{\lambda}$

$$\overline{\underline{E}}(x_{\lambda}, y_{\lambda}) \cong \int_{4\pi} \overline{\underline{E}}(\phi_{x}, \phi_{y}) e^{+j2\pi(x_{\lambda}\phi_{x}+y_{\lambda}\phi_{y})} d\Omega$$

$$\overline{\underline{E}}(\phi_{x}, \phi_{y}) \cong \iint_{A} \overline{\underline{E}}(x, y) e^{-j2\pi(x_{\lambda}\phi_{x}+y_{\lambda}\phi_{y})} dx_{\lambda} dy_{\lambda}$$

Thus:
$$\underline{\overline{E}}(x_{\lambda}, y_{\lambda}) \stackrel{\sim}{\leftrightarrow} \underline{\overline{E}}(\phi_{x}, \phi_{y})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\underline{R}_{\underline{E}}(\bar{\tau}_{\lambda}) \stackrel{\sim}{\leftrightarrow} |\underline{\overline{E}}(\phi_{x}, \phi_{y})|^{2} \propto G(\bar{\phi}) \text{(transmitting)}$$
where $\underline{R}_{\underline{E}}(\bar{\tau}_{\lambda}) \stackrel{\triangle}{=} \int \int_{-\infty}^{\infty} \underline{\overline{E}}(\bar{r}_{\lambda}) \underline{\overline{E}}^{*}(\bar{r}_{\lambda} - \bar{\tau}_{\lambda}) dx_{\lambda} dy_{\lambda}$

 $\left(\text{Note} : \overline{\underline{\mathsf{E}}} \text{ is not stochastic} \right)$

Single Aperture Resolution Limits

Source image =
$$T_A(\overline{\phi}) = G(\overline{\phi}) * T_B(\overline{\phi})$$

$$\begin{array}{ccc} & & \updownarrow & \updownarrow & \updownarrow & \updownarrow & \updownarrow \\ f_{\phi} \stackrel{\Delta}{=} \text{cycles per} & & & \updownarrow & \updownarrow & \updownarrow \\ \text{radian (angle)} & & & T_{A} \left(\overline{f}_{\phi} \right) = G \left(\overline{f}_{\phi} \right) \bullet T_{B} \left(\overline{f}_{\phi} \right) \end{array}$$

If $G(\overline{f}_{\phi}) = 0$, there is <u>no</u> response in the image spectrum $T_A(\bar{f}_{\phi})$

Note:
$$R_{\underline{\overline{E}}}(\bar{\tau}_{\lambda}) \overset{\sim}{\longleftrightarrow} G(\bar{\phi}) \longleftrightarrow G(\bar{f}_{\phi})$$
 so $R_{\underline{\overline{E}}}(\tau) \cong G(f_{\phi})$

Single Aperture Resolution Limits

Note:
$$R_{\underline{\overline{E}}}(\bar{\tau}_{\lambda}) \overset{\sim}{\longleftrightarrow} G(\bar{\phi}) \longleftrightarrow G(\bar{f}_{\phi}) \text{ so } R_{\underline{\overline{E}}}(\tau) \cong G(f_{\phi})$$

Example:

Note: Zero response to source angular spectral components with spatial frequencies beyond $f_m = D/\lambda$ cycles/radian

Antenna Responses for Stochastic Signals

Let
$$\overline{E}(x_{\lambda}, y_{\lambda}, t)(vm^{-1} ster^{-1}) = Re\{\overline{E}(t, x_{\lambda}, y_{\lambda})e^{j\omega t}\}$$

Slowly varying, narrowband random signal

Assume stochastic signals from different directions are uncorrelated (so no systematic intensity variations in aperture).

Then:
$$\overline{\underline{E}}(x_{\lambda}, y_{\lambda}, t) \leftrightarrow \overline{\underline{E}}(\phi_{x}, \phi_{y}, t)$$

$$\downarrow \downarrow \qquad \qquad \downarrow \qquad$$

(Double arrow implies irreversibility for two reasons: expectation and magnitude operators used)

Antenna Responses for Stochastic Signals

Then:
$$\underline{\underline{E}}(x_{\lambda}, y_{\lambda}, t) \leftrightarrow \underline{\underline{E}}(\phi_{x}, \phi_{y}, t)$$

$$\downarrow \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow \qquad$$

(Double arrow implies irreversibility for two reasons: expectation and magnitude operators used)

$$\phi_{\underline{\underline{E}}} \left(\tau_{x_{\lambda}}^{\underline{\underline{\Delta}}}, \ \tau_{y_{\lambda}} \right) \longleftrightarrow \underline{E} \left[\left| \underline{\underline{E}} \left(\phi_{x}, \ \phi_{y}, \ t \right) \right|^{2} \right] \\
\uparrow \\
 \left[vm^{-1} \right]^{2}$$

Can we deduce $I(\varphi_x, \varphi_y)[Wm^{-2}ster^{-1}Hz^{-1}]$ from $\overline{\underline{E}}(x_\lambda, y_\lambda, t)$? (Yes)

$$\frac{\Phi_{\overline{\underline{E}}}\left(\tau_{x_{\lambda}}, \tau_{y_{\lambda}}, f\right)}{2\eta_{o}B} \leftrightarrow \frac{E\left[\left|\overline{\underline{E}}\left(\phi_{x}, \phi_{y}, f\right)\right|^{2}\right]}{2\eta_{o}B} = I\left(\phi_{x}, \phi_{y}, f\right)$$

$$\frac{\left(v \text{ m}^{-1}\right)^{2} \text{ ohm}^{-1} \text{ Hz}^{-1}}{\text{e W m}^{-2} \text{ Hz}^{-1}} \qquad \frac{\left(v \text{ m}^{-1} \text{ rad}^{-1}\right)^{2}}{\text{ohm Hz}} \qquad W \text{ m}^{-2} \text{ Hz}^{-1} \text{ ster}^{-1} \text{ [ster not a physical unit]}$$

Lec18.5 - 7 2/6/01

Aperture Field Correlations for a Thermal Source

Note:
$$\phi_{\underline{\overline{E}}_x}(0, 0) = E\left\{\left|\underline{\overline{E}}(x, y, t)\right|^2\right\} = \underbrace{\left(\frac{kT_B}{\lambda^2}\Omega_s B\right)}_{S_o(watts)} 2\eta_o$$
 as expected.

Lec18.5 - 8

Time and Space Field Correlations (3D)

Aperture Synthesis

Assume field of size $\tau_{\lambda_{x_{max}}}$ by $\tau_{\lambda_{y_{max}}}$ within which two small antennas can be moved independently

Note
$$\phi_{\underline{\underline{E}}}(\bar{\tau}) = \phi_{\underline{\underline{E}}}^*(-\bar{\tau})$$

(if stationary w.r.t. r; i.e., true angular decorrelation)

Therefore, in τ_λ space, we need to measure combinations in only two quadrants, e.g., A, B because the conjugates A*, B* follow.

$$=\frac{2L_x}{\lambda}$$

We observe
$$W(\bar{\tau}_{\lambda}) \bullet \phi_{\bar{E}}(\bar{\tau}_{\lambda})$$

and retrieve $W(\overline{\varphi})*|\overline{\underline{E}(\overline{\varphi})}|^2$ where $|\overline{\underline{E}(\overline{\varphi})}|^2$ is the desired image

Lec18.5 - 10

Maximum Antenna Separation Limits Resolution

Origin of difference:

Consider:

Single uniform aperture

Yanishing SNR response functions

Consider:

Your Single uniform aperture

Your Source Found SNR response functions

Circuits for Interferometers

Image from Discrete Antenna Array

$$\text{Recall:} \frac{\underline{\varphi}\left(\tau_{x_{\lambda}},\tau_{y_{\lambda}},f\right)}{2\eta_{o}\mathsf{B}} \leftrightarrow \frac{\left|\underline{\underline{E}}\left(\overline{\varphi},f\right)\right|^{2}}{2\eta_{o}\mathsf{B}} = \mathrm{I}\left(\overline{\varphi},f\right)\!\!\left(\mathsf{Wm}^{-2}\mathsf{ster}^{-1}\mathsf{Hz}^{-1}\right)$$

Therefore:
$$\left[\phi_{\overline{E}}\left(\overline{\tau}_{\lambda},f\right)/2\eta_{o}B\right] \bullet W\left(\overline{\tau}_{\lambda}\right) \longleftrightarrow I\left(\overline{\phi},f\right) * W\left(\overline{\phi}\right)$$

Image from Discrete Antenna Array

$$\begin{bmatrix} \varphi_{\overline{E}}(\overline{\tau}_{\lambda},f)/2\eta_{o}B \end{bmatrix} \bullet W(\overline{\tau}_{\lambda}) \leftrightarrow I(\overline{\phi},f) * W(\overline{\phi})$$

$$W(\tau_{x}) = \begin{matrix} -\Delta \tau_{x} \\ -2L_{x} \end{matrix} - \tau_{x} = \begin{matrix} -\Delta \tau_{x} \\ -\Delta \tau_{x} \end{matrix} - \begin{matrix} -\Delta \tau_{x} \end{matrix} - \begin{matrix} -\Delta \tau_{x} \\ -\Delta \tau_{x} \end{matrix} - \begin{matrix} -\Delta \tau_{x} \end{matrix} - \begin{matrix} -\Delta \tau_{x} \end{matrix} - \begin{matrix} -\Delta \tau_{x} \\$$

Aliased images are confused if they overlap.

Image Aliasing in Synthesized Images

To avoid image aliasing, let $\Delta \tau_x \approx \lambda / \Delta \phi_x$ (source)

Note that objects in space often are isolated in empty fields, so aliasing is not a problem. Objects imaged on the ground have major aliasing problems, requiring Nyquist-sampled

 $\overset{-}{ au_{\lambda}}$ plane that puts all aliases in the weak sidelobes of $G_{AB}\left(\overset{-}{\phi}\right)$.

Note:
$$\hat{I}(\overline{\varphi}, f) = \left[I(\overline{\varphi}, f) * W(\overline{\varphi})\right] \bullet G_{12}(\overline{\varphi})$$

Lec18.5 - 15

Aperture Synthesis Using Earth Rotation

Earth rotation moves effective $\tau_x(t)$

Earth spins

1 day per curve

Radio astronomers call $\tau_{\lambda_{v}}$, $\tau_{\lambda_{v}}$ "u, v"

Gaps yield sidelobes in reconstructed image

Choose $\Delta \tau_{\lambda}$ sufficiently small that no aliasing occurs.

Note: Simple targets that are characterized by the positions or sizes of only a few key features or elements can be deciphered using heavily aliased or burred images.

Interferometer Circuits

Professor David H. Staelin Massachusetts Institute of Technology

Basic Aperture Synthesis Equation

Recall:

$$\begin{split} & \underline{\overline{E}}\left(\overline{r},t\right) & \longleftrightarrow & \underline{\overline{E}}\left(\overline{\psi},t\right) \\ & \downarrow \downarrow & \downarrow \downarrow \\ & E\left[R_{\underline{E}}\left(\overline{\tau}_{\lambda}\right)\right] = \varphi_{\underline{\overline{E}}}\left(\overline{\tau}_{\lambda}\right) & \longleftrightarrow & E\left\{\left|\underline{\overline{E}}\left(\overline{\Psi},t\right)\right|^{2}\right\} \propto I\left(\overline{\Psi}\right), T_{A}\left(\overline{\Psi}\right) \end{split}$$

Simple Adding Interferometers

 $\vec{v}_{\circ}(\vec{\psi}) = \vec{a^2} + \vec{b^2} + 2\vec{ab}$ (overbars mean "time average" here)

Simple Adding Interferometers

Complex fringe visibility
$$\underline{v} \stackrel{\Delta}{=} \frac{v_{max} - v_{min}}{v_{max} + v_{min}} e^{j2\pi T_1/T} \propto \underline{E}(\bar{\tau}_{\lambda}) \leftrightarrow T_A(\bar{\psi})$$

Interferometry as Fourier Analysis

Example: 2 small duplicate antennas separated by D_{λ} in the x direction

Recall: $\phi_{A}(\overline{\tau}_{\lambda}) = R_{\underline{E}}(\overline{\tau}_{\lambda}) \bullet \phi_{E}(\overline{\tau}_{\lambda})$ $\uparrow \qquad \sim \uparrow \qquad \sim \uparrow$ $T_{A}(\overline{\psi}) = G(\overline{\psi}) * T_{B}(\overline{\psi})$ $\uparrow \qquad \uparrow \sim \qquad \uparrow \sim$ $\underline{T}_{A}(f_{\psi}) = \underline{G}(f_{\psi}) \bullet T_{B}(f_{\psi})$

observed = antenna times signal

2-element adding interferometer

Interferometry as Fourier Analysis

 $\text{2-element adding interferometer} \begin{cases} \mathsf{G}_{\cos}\left(\psi_{x}\right)\tilde{\varnothing} & \text{1} + \cos\mathsf{D}_{\lambda}\psi_{x} \\ 0 & \text{1} + \sin\mathsf{D}_{\lambda}\psi_{x} \\ \mathsf{G}_{\sin}\left(\psi_{x}\right)\tilde{\varnothing} & \text{1} + \sin\mathsf{D}_{\lambda}\psi_{x} \\ 0 & \text{2} + \cos\mathsf{D}_{\lambda}\psi_{x} \\ 0 & \text{3} + \cos\mathsf{D}_{\lambda}\psi_{x} \\ 0 & \text{4} + \cos\mathsf{D}_{\lambda}\psi_{x} \\ 0 & \text{5} + \cos\mathsf{D}_{\lambda}\psi_{x} \\ 0 & \text{6} + \cos\mathsf{D}_{\lambda}\psi_{x} \\ 0 & \text{6} + \cos\mathsf{D}_{\lambda}\psi_{x} \\ 0 & \text{7} + \cos\mathsf{D}_{\lambda}\psi_{x} \\ 0 & \text{$

Interferometer directly measures Fourier components of source Effect of finite bandwidth:

Fringe patterns for all frequencies

(colors) add in phase to create

A delay line in one interferometer arm can redirect the strong white fringe in other directions.

Broad-Bandwidth Effects in Interferometers

 $\underline{E}(x,y,t)$ (the "slowly varying" part) may vary rapidly enough that the offset time L sin ϕ_x/c is significant

$$-\frac{L\sin \phi_x}{c}$$
seconds

$$\begin{split} E \big[v_1 \big(t \big) v_2 \big(t \big) \big] &= \frac{k_1 k_2}{2} G_{12} \Big(\overline{\phi}_x \Big) E \Bigg[R_e \left\{ \underline{E} \bigg(x, y, t + \frac{L \sin \phi_x}{2c} \bigg) \right. \\ &\underline{E}^* \left(x - \tau_x, y - \tau_y, t - \frac{L \sin \phi_x}{2c} \right) \bullet \underline{e}^{j\omega L \sin \phi_x / c} \underline{e}^{-j\gamma} \right\} \Bigg] \\ & \left[\underline{e}^{j\omega \left(t + L \sin \phi_x / 2c \right)} \underline{e}^{-j\omega \left(t - L \sin \phi_x / 2c \right)} = \underline{e}^{j\omega L \sin \phi_x / c} \right] \end{split}$$

$$E\left[v_{1}(t)v_{2}(t)\right] = \frac{k_{1}k_{2}}{2}G_{12}\left(\overset{-}{\phi_{s}}\right)R_{e}\left\{e\overset{-j^{\gamma}}{e^{j2\pi L}}\overset{sin}{\phi_{x}/\lambda}\underbrace{\bullet_{\underline{b}\underline{b}}(t)\left(\frac{L\sin\phi_{x}}{c}\right)}_{monochromatic}\right\}$$
fringe envelope

2/6/01

Bandwidth-Limited Angular Response

In broadband optical interferometer all colors contribute to central "white" fringe; sidelobe fringes appear colored.

Therefore
$$\phi_{x_{null}} = sin^{-1} \left(c/2LB \right) \approx c/2LB$$
 for $\phi_x \cong 1$

e.g.
$$\phi_{x_{null}} \cong \frac{3 \times 10^8}{2 \times 10 \times 10^7} = 1.5$$
 radians for L = 10 m, B = 10 MHz $\frac{10 - 10}{10 - 10} = 1.5$

If B = 1 GHz, and L = 100 m, then $\phi_{x_{null}} = 1.5$ mrad $\cong 5$ arc min B = 3×10^{14} Hz and L = 100 m, then $\phi_{x_{null}} = 10^{-3}$ arc sec.

Dicke Adding Interferometer

 $y(\psi)$ point source response

(Also called "lobe-switching"

interferometer)

This circuit cancels D.C. term, leaving only $\langle 4ab \rangle$ as source traverses beam $\Rightarrow - \psi$

"Adding" interferometer

$$---\left[\overline{a^2} + \overline{b^2} + 2\overline{ab}\right] - \left[\overline{a^2} - 2\overline{ab} + \overline{b^2}\right] = 4\overline{ab}$$

Can add second adder and square-law device operating on a and –jb to yield sine terms in Fourier expansion

Dicke Adding Interferometer

"Lobe-Scanning" Interferometer

Lobes are scanned at $\omega_{\rm m}$, demodulated, and averaged to yield $\underline{\phi}(\tau_{\scriptscriptstyle \lambda})$

Because all bias and large-scale sources yield no fine-scale response, can integrate long times seeking fine structure, e.g. 10⁻³ Jansky point sources like stars (can measure stellar diameters at ~10⁻³ arc sec)

Cross-Correlation Interferometer Spectrometer

Let
$$a(t) \triangleq a_1$$

$$a(t-\tau) \triangleq a_2$$

$$b$$
Delay line or shift register
$$c_+ = a_1 a_2 + b_1 b_2 + a_1 b_2 + a_2 b_1$$

$$c_- = -a_1 a_2 - b_1 b_2 + a_1 b_2 + a_2 b_1$$

$$\underline{\phi}(\bar{\tau}_{\lambda}, f) \circ FFT$$
Computer

Note: if
$$a = b$$
, $\underline{\phi}(\bar{\tau}_{\lambda}, f) \rightarrow \underline{\phi}(0, f) = S(f)$
if $a \perp b$, $\underline{\phi}(\bar{\tau}_{\lambda}, f) \rightarrow 0$

Alternate Cross-Correlation Interferometer Spectrometer

Note: Figures omit down-converters and bandlimiting filters

Mechanical Long Distance Phase Synchronization

For L >> λ , L.O. synchronization can be degraded by random phase variations in path length L between two (or more) sites (due principally to thermal and acoustic variations)

"Line stretcher" varies path so that $\Delta \phi \cong 0$ Communications and telemetry systems can similarly be phase synchronized

Synchronizing with Remote Atomic Clocks

If distance L is too great to synchronize L.O.'s, then we can use a remote clock, e.g. "very-long baseline" interferometry, "VLBI"

If clocks perfect: cross-correlate to find time offset, correct for it, then correlate the signals, albeit with an unknown fixed phase offset ϕ_0 [unless reference source (in the sky) or phase is available].

If clocks imperfect and delays each way are identical: at site A measure delay between clock B and A; do the same at B, and subtract results to yield twice the clock offsets. Use this offset to align A and B data streams.

Synchronizing with Remote Atomic Clocks

Alternative approaches if clocks and transmissions are imperfect:

a) Track and correct phase shifts:

Example: A 10^{-12} cesium clock drifts 2π in ~ 100 sec, so $\hat{\underline{\phi}}(\tau_{\lambda}, f)$ might be computed for 5 – 10 sec blocks before averaging; then only $|\hat{\underline{\phi}}|$ is known.

b) Same, but set phase using strong resonant line point source,

c) or separable point source in space, modulation, etc.

To source
To reference

Multiband Synchronization of Clocks

Use multiple frequencies for wideband sources:

Switch across all f's within coherence time of clock.

Phaseless Interferometry

Hanbury-Brown and Twiss
Visible interferometer at
Narrabri, Australia

$$\left[\text{For } T_{\text{R}} >> T_{\text{A}}, \frac{v_{\text{o rms}}}{\left\langle v_{\text{o}} \right\rangle} \cong \frac{T_{\text{R}}^2}{T_{\text{A}}^2 \sqrt{2W\tau}}\right]$$

⇒ source size, etc.

One might (wrongly) think photodetectors would lose all phase information and ability to measure source structure at λ/D resolution.

Recall:
$$E[aabb] = \overline{a^2}\overline{b^2} + 2\overline{ab}^2$$
, where \overline{ab} is $\phi_{\underline{E}}(\bar{\tau}_y)$ here.

Phaseless Recovery of Source Structure

Recall: $E[aabb] = \overline{a^2}\overline{b^2} + 2\overline{ab}^2$, where \overline{ab} is $\phi_{\underline{E}}(\overline{\tau}_y)$ here.

Phaseless Interferometer Interpretation: Independent Radiators

Source, independent thermal radiators g and h

a,b are uncorrelated if $\Delta \phi_a - \Delta \phi_b \approx 2\pi$ $[\Delta \phi_a \text{ is } \Delta \phi \text{ at "a" for rays g,h}]; \text{ or if }$

$$\frac{\phi_s}{2} = \phi \tilde{>} (\lambda/2)/L.$$

Thus a,b decorrelated if $\phi_s > \lambda/L$.

Phaseless Interferometer Diffraction-Limited Source

If $\theta > \theta_{\rm B} \simeq \lambda/D$, then a and b are ~uncorrelated

Therefore decorrelated if
$$D\theta \tilde{\geq} \lambda$$
 or if $DL/R \tilde{\geq} \lambda$ since $\theta \cong L/R$ or if $\phi_s \tilde{\geq} \lambda/L$ since $\phi_s \cong D/R$

Radar Equation

Issues: Signal design
Processor design
Antenna

Propagation, absorption, Scattering refraction, scintillation, scattering, multipath

$$\begin{aligned} & \text{Wm}^{-2} \text{ at transmitter} \\ & \text{P}_{\text{rec}} = \underbrace{\frac{P_{t}}{4\pi R^{2}} \bullet G_{t}} \bullet \underbrace{\frac{\sigma}{4\pi R^{2}}} \bullet A_{t} = P_{t} \left(\frac{G\lambda}{4\pi R^{2}}\right)^{2} \frac{\sigma}{4\pi} \text{ Watts} \\ & \text{Wm}^{-2} \text{ at target} \end{aligned}$$

 σ "scattering cross-section" is equivalent capture cross-section for a target scattering isotropically

Radar Scattering Cross-Section

σ "scattering cross-section" is equivalent capture cross-section for a target scattering isotropically

Note: Corner reflector can have $\sigma >>$ size of target

Biastatic radars:

If target is unresolved, $P_{rec} \propto 1/R_1^2R_2^2$ If target is resolved by the transmitter, $P_{rec} \propto 1/R_2^2$

Note resolution enhancement:

 $P_{rec} \propto R^{-4}G^2$ where $G^2(\theta)$ has a narrower beam than $G(\theta)$

Target Scattering Laws

1) Specular

3) Faceted

2) Scintillating

4) Lambertian

 $\cos \theta \propto \text{power scattered}$ (geometric projection only)

Target Scattering Laws

5) Random Bragg Scattering (frequency selective)

At Bragg angles
$$\triangle Path_{1,2} = n \cdot 2\pi$$
 $n = 0, \pm 1, \pm 2,...$

$$n = 0, \pm 1, \pm 2,...$$

6) Sub-Surface Inhomogeneities

Target Range-Doppler Response

Narrowband Pulsed Radar

Range-Doppler Response for a CW Pulse

Note north-south ambiguity