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Antenna Aperture Transform Relations and Resolution

Define angular spectrum E((px,(py)for
Incoming monochromatic signals

Not to be confused with the radially
expanding and diminishing waves

7 _
P, characterized by E(6,,R)

Py

2T
+]—

E(xy)= [ Efo, o,)e "
[aperture] \[vmlvsterlj

(Xx +Yoy)

o[@)

2T
=Xy y@v)dxdy(For Qs P, << gj

Equivalently we let x/A = X, 5 YIA = Ya




Antenna Aperture Transform Relations and Resolution

Equivalently we let x /% = X, 5 YIA = Ya

E(x,.y,)= [, E(0.0,)e" ™" do

E(,.0,) = [[,E(xy)e " lax,ay,

E(wax) © E((Px’q)y)
) \)

‘E((Px,(l)y)‘z oc G(@)(transmitting)

IIOE(FK )E (Fx = %x)dxxdyx




Single Aperture Resolution Limits

Source image =T, ((p) = G((p) * Tg 6)

f, écycles per T
radian (angle) *

If G(f ): 0, there is no response

In the image spectrum T, (f )




Single Aperture Resolution Limits

~ Dcycles
A radian




Antenna Responses for Stochastic Signals

Let E(x,, y,, t)(vm™ ster‘l) = Re{E(t, xk,yx)ej(’“}

Slowly varying, narrowband random signal

Assume stochastic signals from different directions are
uncorrelated (so no systematic intensity variations in aperture).
Then: E(x,, v, t) < E(¢,. ¢, t)
i (Double arrow implies
g A irreversibility for two reasons:

E[RE (n )J expectation and magnitude
N operators used)

(v %) o€ [Elon 0,0t
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Antenna Responses for Stochastic Signals
Then: E(x,, ¥,, t) <> E

(Double arrow implies
irreversibility for two reasons:
expectation and magnitude
operators used)

(v m‘l)2 ohm™ Hz™ (V m™ rad'l)2 W m™ Hz™ ster™

~W m=2 Hz? ohm Hz [ster not a physical unit]




Aperture Field Correlations for a Thermal Source

square source @ T, (K)

say Q =(0.01rad)” = 10 *ster

aperture
y

EDE((PX,%)Z}

KD, 2n,B

"/

0

0.01 rad 0.01 rad )
single polarization B Is the signal 0.01 X
bandwidth of interest

Note: ¢ (O, O) = E{‘E(x Y, t)r} _ (%Qsszno as expected.

o
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Time and Space Field Correlations (3D)

time/
frequency

g (Tkx,rky , 7:)/2110 (sz) Oz (rkx,rky,f)/Zno (WmZHzl)
Tt © 0

KT, (o.f)

Ix(é,f): . Wm™ Hz ™ ster™

(one polarization)




Aperture Synthesis

Assume field of size t, by,  within which two small

Xmax Ymax

antennas can be moved independently

Note ¢ (’C) = (I)Z (—’C)
(if stationary w.r.t. r; i.e., true angular decorrelation)
b Tky W(Tk)

Ymax \l /

Therefore, In 1, space, we need to
measure combinations in only two

guadrants, e.g., A, B because the
conjugates A", B” follow.

Xmax

|
L 271, _ 2

Ymax

We observe W(;x) O

)
and retrieve W(@) E(o|] where ‘E(@) is the desired image

2
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Maximum Antenna Separation Limits Resolution

—Wla]owle)- 4

I
’/

1 ®----- abELE b o-->T
0 o y /' /
| rma

T, =LA ?y  Null at

2L, | r A

Aperture synthesis: 0,,; = L2
y

A A
I_ (nA_l)

X y

Recall, filled aperture: 0, =

Origin of difference:
Consider:

. o
- . VS
Single uniform Ly K LIK

L . L,
aperture X Point-source - N Good SNR
Vanishing SNR- /' —response functions |

AVAVAVAVA
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Circuits for Interferometers

EQ(@) % C:(0)
V4 (1) vy (1)

V= klRe{ 61(6) .E(X’y’t)ejwt} Narrowband
V,(t) =k, Re{@’E(X—TX,Y—Ty,t)e”ej“’t} Case

T slowly varying
Output =E| v, (t)v,(t) | =

k. k _ .
122 Re \/GlG OE[ (XYt) = (X—Tx,y—ry,t)le iy

éGlz
[Recall E|a(t)b(t




Image from Discrete Antenna Array

E.G.
y
“T-array”

(3, 3)/§

E ——

(I)(’CX Ty, f
ZnOB

Recall:

~ I(@,f)(Wm‘zster‘le‘l)

Therefore:[cl)E (a,f) / 2nOBJ oW (;x) YN I(@i) * W (6)




Image from Discrete Antenna Array

bg (0 f) 1208 [e W) o T(o.f) W (o)

—| |-At,
N :Eollllloooloo]
—oaL, —1 = At

W(rx)z

|
A AT,

— A At —
ofa afa N
ViV VARV, v U X

Aliased images are confused if they overlap.




Image Aliasing in Synthesized Images
((I)E(;x,f /ZnOB)OW(;x)HCD@,f)*W(@)
(o.f)+W(0) = Py M A,

, ]

— Py Oy

k/ﬂ— | t_r|uth>x< SN
iR —] | IO(I |

To avoid image aliasing, let At, < L/A¢, (source)

Note that objects in space often are isolated in empty fields,
so aliasing Is not a problem. Objects imaged on the ground
have major aliasing problems, requiring Nyquist-sampled

. plane that puts all aliases in the weak sidelobes of Gs ((p)

Note: 1(5.1) =[1(5.1) « W (5)] G 9]




Aperture Synthesis Using Earth Rotation

% % Moveable on a track

| o Gaps yield
Earth rotation moves effective t«(t) . sidelobes in
® /ly\ reconstructed
A 7 Image

- T
T ! % \ A

\J
Nun
Earth 1 day per curve ¥/<AT>L

SpINs Radio astronomers Choose At, sufficiently small
callt, , t, "u, V'  that no aliasing occurs.

A

Note: Simple targets that are characterized by the positions
or sizes of only a few key features or elements can be
deciphered using heavily aliased or burred images.
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Interferometer Circuits
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Basic Aperture Synthesis Equation

£y
N2
e (]| 1), (9




Simple Adding Interferometers

vo(7)=a

+E+2£

(overbars mean
&, "time average" here)

Point Vo (\Ifx) 0,

@ source

response; T f

/(single
H_\ antenna)
Wy

I
Vo() First nuli AMLET




Simple Adding Interferometers

TR sin‘l(MZL) Spread source response
=~ A/2L if L << L

—

I
I

I N

1 S
I

: P A —Vmin i /
Complex fringe visibility v £ ~max ~min gJ2nTy/T . ¢

\Y
\Y

max T Vmin
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Interferometry as Fourier Analysis

o) Recall: o, (7, )=Re(5,) » (%)
1 3_ ~£ ~7 ~$_
To(v)=6(v) = To(v)

D0 b 5 - 0 ¢

Example: 2 small T.(f,)=G(f,) « T.(f,)
duplicate antennas observed = antenna times signal

separated by D, In
the x direction

1 +cosD,v,

Geos (v,) /\/\/\/\/\]\/\/\/\w

2-element adding 1+sinD,vy,

Interferometer Gsm (\le)OC /\/\/\/\]\/\/\/\/\

Lecl18.5-21
2/6/01




Interferometry as Fourier Analysis

2-element adding

- 1 + sin D
interferometer 2 W ox

Interferometer directly measures Fourier components of source

Effect of finite bandwidth: Fringe patterns for all frequencies
(colors) add in phase to create

~ Y,

"white frlnge
|_A\|/X oc —

fﬂw WW fJUl[NAA wWWwX

B=2A

A delay line in one interferometer arm can redirect
the strong white fringe in other directions.

Lec18.5 - 22
2/6/01




Broad-Bandwidth Effects Iin Interferometers

E(x.y,t)(the "slowly varying" part)
may vary rapidly enough that the offset
time L sin ¢, /c is significant

Lsin ¢
C

K " L sing,
G12 (d’x)E{Re {E(X’y’” 2C(P j

X_seconds

. ejcoL Sin @y /ce—jy H
\ J
Y

|:ejoa(t+L Sin @, /Zc)e—joa(t—L singy /2¢) _ QoL SINoy /c}

vs (v, ()] - kky Glz((Ps)R {e-jvejan Sin oy /A _()(Lsm(l) )}

cross—galn monochromatic

fringe fringe envelope
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Bandwidth-Limited Angular Response

E(f)[ Oy (7) E[vi(t)v,(1)]
rcwhlte fringe

null at
E.G. 1/2B sec GlZ Dy -7

7
7
7
'
= P N

|( T Sec. ——=—<piApp W\M»A-ﬁ 0,
0 O 1 L Frlnge envelope

Null @ L = = —SecC :
@ C 2B Oy (Lsing, /c)
In broadband optical interferometer all colors contribute to
central "white" fringe; sidelobe fringes appear colored.

Therefore ¢, =sin"(c/2LB)~c/2LB for ¢, =1

8
e.g. o, 510 =1.5radiansforL=10 m, B=10 MHz

null 2 % 10 x 107

T
o 10 MHz

If B=1GHz, and L =100 m, then NS 1.5 mrad =5 arc min
B=3x10" Hzand L =100 m, then ¢, =10"arc sec.

Lecl8.5-24
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Dicke Adding Interferometer

y(y) point source response "Adding" interferometer

/+1 Dllcke Dicke switch
B oscﬂlator ?
" :/“ ™ \<8.2 +b2i2ab>
el A
AVAU ‘I' \, ‘J’ ‘-:’ s “ \V

(Also called "lobe-switching"
. o
Interferometer)

This circuit cancels D.C.
term, leaving only (4ab)

as source traverses Can add second adder and

beam = v square-law device operating
on a and —jb to yield sine
terms in Fourier expansion

Lec18.5 - 25
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Dicke Adding Interferometer

_ -+
Yields ¢(, ) for

even a stationary
source

@ /1
Note: If no Dicke

switch, have gain
fluctuation

vulnerability




“Lobe-Scanning” Interferometer

Lobes are scanned at
®,,, demodulated, and

averaged to yield ¢(, )

Because all bias and
large-scale sources yield
no fine-scale response,
can Iintegrate long times
seeking fine structure,
e.g. 103 Jansky point
sources like stars (can
measure stellar diameters
at ~10-3 arc sec)

Lec18.5 - 27
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Cross-Correlation Interferometer Spectrometer

c,=aa,+bb,+ab,+a,b,
_=-aa,—bb,+ab, +ab,

Computer

Note: if a =b, Q(i, f)—)@(O, f)=S(f)
faLb, ¢(c. f|—0




Alternate Cross-Correlation Interferometer Spectrometer

é@% L.O.

Delay line

Computer : -—CQ(B, f)

Note: Figures omit down-converters and bandlimiting filters

Lec18.5 - 29
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Mechanical Long Distance Phase Synchronization

For L >> A, L.O. synchronization can be degraded by random
phase variations in path length L between two (or more) sites
(due principally to thermal and acoustic variations)

One standard solution:

M Line Stretcher

"
>

—m
A Feedback

"Line stretcher" varies path so that A¢ =0
Communications and telemetry systems can
similarly be phase synchronized

Lec18.5 - 30
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Synchronizing with Remote Atomic Clocks

If distance L Is too great to synchronize L.O.'s, then we can use
a remote clock, e.g. "very-long baseline" interferometry, "VLBI"

0%-

(Hydrogen maser — ~10™, 10"
Cesium beam = ~107"
) Global Positioning System (GPS) — ~10"°sec

Loran-C = ~107° sec
Temperature-stabilized crystal oscillators = ~10°-10"°
| Crystal oscillators = ~107-10"

If clocks perfect: cross-correlate to find time offset, correct for it, then
correlate the signals, albeit with an unknown fixed phase offset ¢,
[unless reference source (in the sky) or phase is available].

If clocks imperfect and delays each way are identical: at site A measure
delay between clock B and A; do the same at B, and subtract results to
yield twice the clock offsets. Use this offset to align A and B data streams.

Lec18.5-31
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Synchronizing with Remote Atomic Clocks

Alternative approaches if clocks and transmissions are imperfect:

a) Track and correct phase shifts: A
then average ¢(r;, f)

t

Example: A 10 cesium clock drifts 2z in ~ 100 sec, so ¢(t,, f) might be

computed for 5-10 sec blocks before averaging; then only |¢| is known.

b) Same, but set phase using strong resonant line point source,

®() | _monochromatic Yy
point source A

o
f Yy

,— Strong point source

C) or separable point source in space, modulation, etc.

To source
ﬁ ﬁ J/To reference

Lec18.5 - 32
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Multiband Synchronization of Clocks

Use multiple frequencies for wideband sources:
%Vhich fringe F Is source on?

Switch across all f's within coherence time of clock.

Source 1
_-~Source 2

Observed bands
(collectively adequate)

f




Phaseless Interferometry

Hanbury-Brown and Twiss

Visible interferometer at
Narrabri, Australia

2
0rms ~ TR

(Vo)  T2J2Wr

For T >>T,,

One might (wrongly) think
photodetectors would lose
all phase information and
ability to measure source
structure at A/D resolution.

Phototube
A

Recall: E[aabb} —a%b? +2ab",
where ab is q)E(%y) here.

— 2
ecios-ae OC |0 ('cx) —> source size, eftc.
- L1
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Phaseless Recovery of Source Structure

Recall: E[aabb] = ab? + 2ab ,where ab is de (Ey) here.

Recall: E(x, y) < E(Q)

Purely real if source
IS even function of
position, allowing
perfect source
reconstruction




Phaseless Interferometer Interpretation: Independent Radiators

D

Source, independent

9 / h thermal radiators g and h

1
R
_l_

* T

a,b are uncorrelated if Ay —Adp > 2n

[Ad, is Ad at "a" for rays g,h]; or if
B _psoL

Thus a,b decorrelated if ¢ > A/L.
Lec18.5 - 36 7\//2 a L
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Phaseless Interferometer Diffraction-Limited Source

/ Source "Aperture”

beL/R

R

If0 >0, =\/D, then a and b are ~uncorrelated

Therefore decorrelated if D6 > A
orif DL/R =\ since 6 =L/R
orif ¢g =A/L since ¢s = D/R

Lec18.5 - 37
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Radar Equation

“~ Target v
e

.

- J
h'd Y h'd

Issues: Signal design Propagation, absorption, Scattering
Processor design refraction, scintillation,

Antenna scattering, multipath

Wm™ at transmitter
f—%

2
P.. = i ~0G, o ° -~ ¢ A =P, GA iWatts
4nR - 4nR 4nR? ) 4rw

Wm™ at target

c "scattering cross-section" is equivalent capture
cross-section for a target scattering isotropically

Lec18.5 - 38
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Radar Scattering Cross-Section

c "scattering cross-section" is equivalent capture
cross-section for a target scattering isotropically

Note: Corner reflector can have o >> size of target

Biastatic radars:

If target is unresolved, P_. o« 1/R?R;

rec

If target is resolved by the transmitter,
P. &1/R;

r

Note resolution enhancement:
P.. «R™“*G? where G*(6) has

r

a narrower beam than G(0)

Lec18.5 - 39
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Target Scattering Laws

1) Specular

S S

o\

2) Scintillating 4) Lambertian

o

—>| — O << A =~ nulls

cos 0 oc power scattered
(geometric projection only)

N3




Target Scattering Laws

5) Random Bragg Scattering (frequency selective)
At Bragg angles APath,, =ne2n n=0, £1, £2,...

Path 2 between
phase fronts A and B

. Quasi-periodic surface

6) Sub-Surface Inhomogeneities .

0 0
77777777 Tt 0/
&

~ random Bragg O O\q
scattering Q e.g. rocks

Z

Lecl8.5-41
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Target Range-Doppler Response

Narrowband Pulsed Radar

t f
Impulse response

function for a deep target

@Deep Target

CW Radar
"Spins"

Return Doppler,
shifted to f, + Af / /J




Range-Doppler Response for a CW Pulse

o(t, f)
Range band

\ e.g. Moon

Doppler Band

Note north-south ambiguity




