Interferometer Circuits

Professor David H. Staelin Massachusetts Institute of Technology

Basic Aperture Synthesis Equation

Recall:

$$\begin{split} & \underline{\overline{E}}\left(\overline{r},t\right) & \longleftrightarrow & \underline{\overline{E}}\left(\overline{\psi},t\right) \\ & \downarrow \downarrow & \downarrow \downarrow \\ & E\left[R_{\underline{E}}\left(\overline{\tau}_{\lambda}\right)\right] = \varphi_{\underline{\overline{E}}}\left(\overline{\tau}_{\lambda}\right) & \longleftrightarrow & E\left\{\left|\underline{\overline{E}}\left(\overline{\Psi},t\right)\right|^{2}\right\} \propto I\left(\overline{\Psi}\right), T_{A}\left(\overline{\Psi}\right) \end{split}$$

Simple Adding Interferometers

 $\vec{v}_{o}(\vec{\psi}) = \vec{a^2} + \vec{b^2} + 2\vec{ab}$ (overbars mean "time average" here)

Simple Adding Interferometers

Complex fringe visibility
$$\underline{v} \stackrel{\Delta}{=} \frac{v_{max} - v_{min}}{v_{max} + v_{min}} e^{j2\pi T_1/T} \propto R_{\underline{E}}(\overline{\tau}_{\lambda}) \leftrightarrow T_{A}(\overline{\psi})$$

Interferometry as Fourier Analysis

Example: 2 small duplicate antennas separated by D_{λ} in the x direction

observed = antenna times signal

2-element adding interferometer

Interferometry as Fourier Analysis

Interferometer directly measures Fourier components of source Effect of finite bandwidth:

Fringe patterns for all frequencies

Fringe patterns for all frequencies (colors) add in phase to create

A delay line in one interferometer arm can redirect the strong white fringe in other directions.

Broad-Bandwidth Effects in Interferometers

 $\underline{E}(x,y,t)$ (the "slowly varying" part) may vary rapidly enough that the offset time L sin ϕ_x/c is significant

$$-\frac{L\sin \phi_x}{c}$$
seconds

$$\begin{split} E \big[v_1 \big(t \big) v_2 \big(t \big) \big] &= \frac{k_1 k_2}{2} G_{12} \Big(\overline{\phi}_x \Big) E \bigg[R_e \left\{ \underline{E} \bigg(x, y, t + \frac{L \sin \phi_x}{2c} \bigg) \right. \\ \underline{E}^* \bigg(x - \tau_x, y - \tau_y, t - \frac{L \sin \phi_x}{2c} \bigg) \bullet \underline{e}^{j\omega L \sin \phi_x / c} \underline{e}^{-j\gamma} \right\} \bigg] \\ & \left[\underline{e}^{j\omega \left(t + L \sin \phi_x / 2c \right)} \underline{e}^{-j\omega \left(t - L \sin \phi_x / 2c \right)} \right. \\ & = \underline{e}^{j\omega L \sin \phi_x / 2c} \bigg] \end{split}$$

$$E\left[v_{1}(t)v_{2}(t)\right] = \frac{k_{1}k_{2}}{2}G_{12}\left(\overset{-}{\phi_{s}}\right)R_{e}\left\{e^{-j^{\gamma}}e^{j2\pi L}\sin\phi_{X}/\lambda\right\} \underbrace{-\phi_{E}(t)\left(\frac{L\sin\phi_{X}}{c}\right)}_{\text{fringe}} \underbrace{-\phi_{E}(t)\left(\frac{L\sin\phi_{X}}{c}\right)}_{\text{fringe}}$$

2/6/01

Bandwidth-Limited Angular Response

In broadband optical interferometer all colors contribute to central "white" fringe; sidelobe fringes appear colored.

Therefore
$$\phi_{x_{null}} = sin^{-1} \left(c/2LB \right) \approx c/2LB$$
 for $\phi_x \cong 1$

e.g.
$$\phi_{x_{null}} \cong \frac{3 \times 10^8}{2 \times 10 \times 10^7} = 1.5$$
 radians for L = 10 m, B = 10 MHz $\frac{10 - 10}{10 - 10} = 1.5$

If B = 1 GHz, and L = 100 m, then $\phi_{x_{null}} = 1.5$ mrad $\cong 5$ arc min B = 3×10^{14} Hz and L = 100 m, then $\phi_{x_{null}} = 10^{-3}$ arc sec.

Dicke Adding Interferometer

 $y(\psi)$ point source response

(Also called "lobe-switching" interferometer)

This circuit cancels D.C. term, leaving only $\langle 4ab \rangle$ as source traverses beam $\Rightarrow - \frac{1}{\sqrt{2}} \frac{$

"Adding" interferometer

Can add second adder and square-law device operating on a and –jb to yield sine terms in Fourier expansion

Dicke Adding Interferometer

"Lobe-Scanning" Interferometer

Lobes are scanned at $\omega_{\rm m}$, demodulated, and averaged to yield $\underline{\phi}(\tau_{\scriptscriptstyle \lambda})$

Because all bias and large-scale sources yield no fine-scale response, can integrate long times seeking fine structure, e.g. 10⁻³ Jansky point sources like stars (can measure stellar diameters at ~10⁻³ arc sec)

Cross-Correlation Interferometer Spectrometer

Let
$$a(t) \triangleq a_1$$

$$a(t-\tau) \triangleq a_2$$

$$b$$
Delay line or shift register
$$c_+ = a_1 a_2 + b_1 b_2 + a_1 b_2 + a_2 b_1$$

$$c_- = -a_1 a_2 - b_1 b_2 + a_1 b_2 + a_2 b_1$$

$$\underline{\phi(\overline{\tau}_{\lambda}, f)} \circ - FFT$$
Computer

Note: if
$$a = b$$
, $\underline{\phi}(\bar{\tau}_{\lambda}, f) \rightarrow \underline{\phi}(0, f) = S(f)$
if $a \perp b$, $\underline{\phi}(\bar{\tau}_{\lambda}, f) \rightarrow 0$

Alternate Cross-Correlation Interferometer Spectrometer

Note: Figures omit down-converters and bandlimiting filters

Mechanical Long Distance Phase Synchronization

For L >> λ , L.O. synchronization can be degraded by random phase variations in path length L between two (or more) sites (due principally to thermal and acoustic variations)

"Line stretcher" varies path so that $\Delta \phi \cong 0$ Communications and telemetry systems can similarly be phase synchronized

Synchronizing with Remote Atomic Clocks

If distance L is too great to synchronize L.O.'s, then we can use a remote clock, e.g. "very-long baseline" interferometry, "VLBI"

If clocks perfect: cross-correlate to find time offset, correct for it, then correlate the signals, albeit with an unknown fixed phase offset ϕ_0 [unless reference source (in the sky) or phase is available].

If clocks imperfect and delays each way are identical: at site A measure delay between clock B and A; do the same at B, and subtract results to yield twice the clock offsets. Use this offset to align A and B data streams.

Synchronizing with Remote Atomic Clocks

Alternative approaches if clocks and transmissions are imperfect:

a) Track and correct phase shifts:

Example: A 10^{-12} cesium clock drifts 2π in ~ 100 sec, so $\hat{\underline{\phi}}(\tau_{\lambda}, f)$ might be computed for 5 – 10 sec blocks before averaging; then only $|\hat{\underline{\phi}}|$ is known.

b) Same, but set phase using strong resonant line point source,

c) or separable point source in space, modulation, etc.

To source

To reference

Multiband Synchronization of Clocks

Use multiple frequencies for wideband sources:

Switch across all f's within coherence time of clock.

