Remote Sensing

Remote sensing is a quasi-linear estimation problem

Equation of radiative transfer:
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Radiation from Sky-llluminated Reflective Surfaces
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Temperature Weighting Function W(z,f,T)

Terms:
02,7 @
N
Forty>>1: Tg(f) =Ty+|T(2)W(zf,T(z))dz

Alternatively, Tg(f) = T{+|(T(z)- T(z)) '(z,f,To(2))dz

Y

Incremental weighting function: W '(z,f,T,(z)) = af_ar-I;B)
To(2)

Note: we have ~linear relation:  Tg(f) & T(2)

(not Fourier)




Atmospheric Temperature T(z) Retrievals from Space

a(®)

(single P) Aw o< pressure P

2
area o #molecules/m

> f

Therefore o, # f(P) for P-broadening trace constituents

L
Ts = T(z)[a(z)e*(z)]dz for 7, >> 1

altitudes where Intrinsic &
doppler broadening dominate

pressure dominates Aw

W(Z,f) —
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Atmospheric Temperature T(z) Retrievals from Space

altitudes where intrinsic &
doppler broadening dominate

pressure dominates A

o, £ 2A L
To = | T(z)[d(z)e_T(z)]dz for tp >> 1
0]

= o(2)

} scale height

> Increasing P

o(®) T

> f > W(f,2)
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Atmospheric Temperature T(z) Retrievals from Below

Ly

Wo

0

—j(')-oc(z)dz

W(f,z) = a(z)e

o(2)

~decaying exponentials, rate is fastest for o,

Temperature profile retrievals in semi-transparent solids or liquids where

(/o) >> A
If ou(z) = constant:

A

L_
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Atmospheric Composition Profiles

To =] p<z)[ U2 s 1(2)e J2‘3‘(2"“}1Z—TB + J [p(2) - po (2)] W, (2, f)diz

o AN

W(Z f) if viewed from space

Because o(z) and W(z,f) are strong functions of the unknown
p(2), this retrieval problem is quite non-linear and can be
singular (e.g. if T(z) = constant). In this case, good statistics
can be helpful. Incremental weighting functions defined relative

to a nearly normal p(z) can help linearize the problem.




Optimum Linear Estimates (Linear Regression)

Parameter vector estimate

“determination matrix” data vector

Choose D to minimize E [(f) — p)t (p- p)}

Derive D - 0 {E [(ﬁ = p)t (p- p):| =)=

8%- row of

Therefore
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Optimum Linear Estimates (Linear Regression)

Therefore




D is Least-Square-Error Optimum if:

1) Jointly Gaussian process (physics + instrument):

m Elr | where r =r,1p,....I

2) Problem is linear:

data d = Mr +n + do
r 1

parameter vector noise (JGRVZM)




Examples of Linear Regression

regression

note change
In slope

Equivalently:

p=(p)+Dyp(d-(d))
(E[e] = (o))
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Regression Information

The instrument alone (via weighting functions)

“*Uncovered information (to which the instrument is blind,
but which is correlated with properties the instrument
does see; D retrieves this too.)

“Hidden information (invisible in instrument and
uncorrelated with visible information); it is lost.
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Nature of Instrument-Provided Information

Assume linear physics: d=WT

Where data vector [1,dy,d,...,dy]
temperature profile [Ty, To,..., Ty]
weighting function matrix

it row of W

Claim:

N -
If T=) aWj and noise n =0,
I=1

=T, perfect retrieval (if W not singular)




Proof for Continuous Variables

N N
If T=) aWj and noise n=0,
=1
then T =Dd =T, perfect retrieval (if W not singular)

Wi(h) = bgas(h)
W>(h) b2191(h) +b2262(h)
W3(h) b3191(N) +b3202(h) +b33¢3(h)

Where: qu)i(h) e o;(h)dh = 5; = {2
0

A Q0
¢j;bjj are known a priori (from physics). Then: dj = jT(h)Wj(h)dh
0
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Proof for Continuous Variables

Then: d; 2 OjOT(h)Wj(h)dh W (h) by 101 (h)
A N W>(h) b2191(h) + D220 (h)

If we force T(h) = > k{W;(h)

1=1

> [ (kiwi(h) wj(h)dh = d' =k'ww' =k
0)

N A N
kl( 2. blmd)m(h)][Z bjn(l)n(h))(dh) - Zkini
n=1 I=1

Therefore where Q iIs a known square matrix

So let “d=k where Q is non-singular




Proof for Continuous Variables

N -
Claim: If T=> a;W; and noise n=0,
=1

then T =Dd =T, perfect retrieval (if W not singular)

So let K = Q_ld —k where Q is non-singular

Then: T(h) = ZkW(h) ZkW(h) T(h) (exact) Q.E.D.

= "minimum information" solution
Which is exact if T=Wk, n=0




To what Is an instrument blind?

W;(h) b11¢1(h)
W5 (h) b21¢p1(h) +b2202(h)

An instrument is blind to T(h) components outside the space
spanned by ¢,,0,,...,0\ Or, equivalently, by its W,, W,,,...,\W._..

By definition, the instrument is blind to any ¢; L W, for all I.




Statistical Methods Can Reveal “Hidden” Components

N 00
In general, T(h) = > kiW;(h)+ > ajdi(h)
=1 , N+l

seen by N all hidden
Instrument channels components

Extreme case: suppose ¢1(h) always accompanied by %d)N +1(h).

\ \
Then our present solution: T(h) =Y k;Wi(h) =Y a9;(h)
1=1 1=1
\
=2

Would become: 'T'(h) = al(d)l + %¢N+1) T

— |
shrinks with

decorrelation

ai0;

Thus hidden components can be
“uncovered” if correlated with visible ones.




General Linear Estimate

éBi
—

. . o0
T =Dd where D| —|:WQ } + Z a”(l)J
\ L j=N+1
J
.. -
minimum-—«;ncovered”

Information ;\tormation

Thus retrieval can be drawn only from the space spanned by

01,92, 0N; B1,B2s---:BN (dimensionality isN: T = ZdiDi]
=1

That is, N channels contribute N orthogonal basis functions

to the minimum-information solution, plus N more basis
functions which are orthogonal but correlated with the first N.
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General Linear Estimate

As N Increases, the fraction of the hidden space which is

“uncovered” by statistics is therefore likely to increase, even
as the hidden space shrinks.

In general:

a priori variance = observed + uncovered + variance |ost

due to noise and decorrelation.

Example: 8 channels of AMSU versus 4 channels of MSU

AMSU and MSU are passive microwave spectrometers
In earth orbit sounding atmospheric temperature profiles
from above with ~10-km wide weighting functions
peaking at altitudes from 3 to 26 km. Note the larger
s latlo of uncovered/lost power for AMSU.
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Example: 8-Channel AMSU vs 4-Channel MSU

MID-LATITUDES (TOTAL POWER = 1222 K?, 15 LEVELYS)
OBSERVED POWER UNCOVERED POWER LOST POWER

e N

A

~— "
MSU - 55° INCIDENCE ANGLE, LAND

Y \

MSU - 0° ANGLE, NADIR

AMSU - NADIR

AMSU - NADIR

2278\

TROPICS (TOTAL POWER = 184 K?)

\
(WINDOW)

LOST
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Y

MSU — NADIR, LAND

AMSU - NADIR
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