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Case I: Nonlinear Physics
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Minimum Square Error (MSE) is usually the "optimum" sought.

It is important that the "training" data used for regression
is similar to, but independent of, the "test" data used for
performance evaluation.
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Case II: Non-Gaussian Statistics
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ˆNote: Linear estimator can set p<0 (which is non-physical):
nonlinear estimator approaches correct asymptotes as d

Note: Physics here is linear. Can use polynomials etc. for
p̂(d), or recursive linear 
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Linear Estimates for Nonlinear Problems

J3

In general, the more varied the data d,  the smaller the performance gap
between linear estimators and nonlinear ones, which are a superset.
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p̂ d ,  d  can be linear in d ,  d  and (noiseless case)
perfect, even though p d ,  d  is nonlinear
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1 2Linear estimates are suboptimum for d  or d  alone.
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Linear Estimates for Nonlinear Problems

J4

2d
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( )1 2ˆPlane p d ,d  has two
angular degrees of freedom
to use for minimizing ( p).∆
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Generalization to Nth-Order Nonlinearities

J5

Note: For perfect linear estimation the number of different
observations must equal or exceed n, the maximum
order of the polynomials characterizing the physics.
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Claim: In non-singular cases there exists an
ˆexact linear estimator p Dd constant.= +
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where d , d , , d  are observed noise-free
data related to p by an nth-order polynomial.
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Nonlinear Estimators for Nonlinear Problems
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augˆApproaches:1) p Dd  where d is
augmented via polynomials

2) Rank reduction first via KLT
3) Neural nets

ˆ4) Iterations with D p
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Useful if d is of High Order

Case (2): Use of KLT to Reduce Rank 
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“Karhunen-Loeve Transform” (KLT)
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in d ,  where E dd , and 

∆

>

′
′ ′

′ ′ ′⎡ ⎤ = δ λ λ ≥ λ⎣ ⎦
1tt

dd 2

n

 . . . .0
C  =  E dd K   K

0 . . . .  

∆
λ⎡ ⎤

⎡ ⎤ ⎢ ⎥= λ⎢ ⎥⎣ ⎦ ⎢ ⎥
λ⎣ ⎦

# #

The KLT is essentially the same as Principal Component
Analysis (PCA) and Empirical Orthogonal Functions (EOF).
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Nonlinear Estimators Using Rank Reduction
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Useful if d is very nonlinear
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Neural Networks (NN)

L4

Neural nets compute complex polynomials
with great efficiency, simplicity.

p̂NNd

p̂3NN1NNd 2NN
d′ d′′ NMW

"Hidden Layers"

NN may be recursive or purely Feed-Forward (FFNN)

NN coefficients computed
via relaxation optimization
back propagation.
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Neural Networks (NN)

L5

i jWeights W  are found by guessing, then perturbing to reduce cost

ˆfunction on p p  over "training set" of known d,p . Training
can be tedious. Commercial software tools are commonly used.

⎡ ⎤ ⎡ ⎤− ⎣ ⎦⎣ ⎦

Degrees of freedom in training set should exceed the number of
weights by a modest factor of ~ 3-10. Risks of "overtraining" are
reduced by monitoring NN performance on independent test data.
The more nonlinear problems need more layers and more
internal nodes, as determined empirically. Neural nets can
also perform recognition tasks.

p̂Linear
Estimator

NNd

Simple neural nets are easier to train correctly,
so merge with linear techniques, e.g.
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Accommodating Nonlinearity via Iteration
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A. Library Retrievals
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Accommodating Nonlinearity via Iteration
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B. Physics Recomputation
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Nonlinear Physics
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iEssential only that D always yields p  in
right direction (so errors shrink).
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Accommodating Nonlinearity via Iteration

M3

C. Spatial Iteration
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Works well if data is smooth.
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Multi-Dimensional Estimation
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( ) ( )( )
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e.g., Atmospheric Temperature Profiles
ˆ1) T h, x, y f d x, y

ˆ2) T h, x, y f d x, y , d x , y ,...

Estimate improved by additional correlations
and degrees of freedom.
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Genetic Algorithms
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1) Characterize algorithm by segmented character string,
e.g., a binary number.

3) Many algorithms (strings) are tested, and the metrics
for each are evaluated for some ensemble of test cases.

2) Significance of string is defined, e.g.,
A. As weights in a linear estimator or neural net.
B. It characterizes the architecture of a neural net.

4) Randomly combine elements of best algorithms to form
new ones; some random changes may be made too.

5) Iterate steps (3) and(4) until asymmtotic optimum is
reached. Can be used for pattern recognition, signal
detection, parameter estimation, and other purposes.

6) Proper choice of "gene" size accelerates convergence
(genes swapped as units).


