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1 Introduction

This short note is a description of the analysis of single phase induction motors. It is intended to be
read along with a description of the analysis of polyphase motors1.This will be called the ’reference
document’. The style of analysis used here is described in more detail in that note and many of
the elements of this analysis appear only in that other note.

The single phase machine contemplated here actually has two windings, usually referred to as
the ”main” or ”run” winding and the ”auxiliary” or ”start” winding. We assume here that the
two windings are geometrically in quadrature but they need not have the same number of turns or
the same distribution. A cartoon view of an axial section of such a machine is shown in Figure 1.
We assume the direction of rotation is counter-clockwise (in the θ direction). The two windings
are labeled as A (run) and B(start). The usual strategy for making one of these motors start is to
arrange the impedances of the two windings so that current flows in the start winding with a phase
advance with respect to the current in the run winding.

θ
Phase A
(Run)

Phase B
(Aux)

Figure 1: Single Phase Motor: Geometric Cartoon

2 Derivation of Fields and Inductances

To get started, we find the fields produced by the stator windings and their flux linkages so as to
find their self inductances. In fact we will find only the air-gap inductances as these are all that

1For example, see ”Analytic Design Evaluation of Induction Machines”, Notes for MIT subject 6.685, Chapter 8.
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are required for this explication. Of course analytical evaluation of machine operation will require
evaluation of leakage inductances too.

With the geometry shown in Figure 1, radial magnetic flux density in the air-gap is:

∑ 4
(

Naia Nbib π
Br = µ0 kwna sin npθ + kwnb sin n cos npθ

nπ 2pg 2pg 2
n odd

)

where Na is the number of turns in the main winding, Nb is the number of turns in the auxiliary
winding, p is the number of pole pairs, g is the effective air-gap and kwna and kwnb are the winding
factors for the nth harmonic fields of the two windings, respectively. Winding factors will be dealt
with later.

To estimate inductance we need to compute flux linkages of the two windings. The flux linkages
for the nth harmonic fields are:

0

λan = ℓ

∫

NakwnaBrn(θ)Rdθ
π

−
p

π
2p

λbn = ℓ

∫

NbkwnbBrn(θ)Rdθ
π

−
2p

Here, we have used the symbol ℓ to describe the axial length of the machine.
To estimate winding self inductance, in which we ignore any currents that might be flowing in

the rotor, we find the nth space harmonic flux linkages to be (no surprise here):

4 N2k2

an = a wnaRℓ
λ µ0 ia

π n2p2g

4 N2

λbn = µ b k2
wnbRℓ

0 ib
π n2p2g

Where R is radius of the air-gap.
At this point we define the effective turns ratio

π Nbkwnb
αn = sin n

2 Nakwna

so that the nth harmonic inductances of the windings are:

4 N2 2

= akwnaRℓ
Lan µ0

π n2p2g

4 N2

L = µ b k2
wnbRℓ

bn 0 = 2α
π n2p2 nLan

g

Note the sign of the effective turns ratio, which does not affect the self inductances but does
affect the direction of rotation of the various magnetic field components. Harmonics number 3 and
7 (and one of the zigzag components) rotate in the reverse direction than would be indicated by
the sequence order of currents in the stator windings.
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3 Squirrel-Cage Model

In the single phase motor we must deal with a number of space harmonics with positive and negative
phase velocities. This analytical description will deal with one such component. The squirrel cage
is made up of a number (NR) of discrete conductors (’bars’), each carrying a current that will be
of the form (in bar k):

ik = Re I t
ke

jωr

Depending on the direction of the current wa

{

ve the b

}

ar current will be of the form:

2πnpk
∓j

Ik = I0e
NR

As is shown in the reference document, this set of discrete currents is equivalent to a number
of space harmonics of surface current:

NR
= Re

{

I0 j(ω t npθ′)K r ∓
z e

n
2πR

}

∑

The values of n for which Kz is non-zero are

NR
n = 1 + integer ×

p

and they will produce magnetic flux across the air-gap:

NRI0
Brn = ∓jµ0

2πnpg

Electric field induced by these fields is:

ωrR µ0NRωrR
En = ± Bn = −j I

np 2πgn2p2 0

If we assume, as in the reference document, that only the smallest order terms (n = 1, n =
1 ± NR ) contribute substantially to the electric field driving current through the rotor conductor,

p

E1 + En+ + En− = Z Islot 0

Now we need to put this back into the form of an equivalent circuit. Note that the space
fundamental field is caused by currents in the stator as well as the rotor but that the higher order
space harmonic voltage components are produced only by rotor currents. To refer the rotor current
back to the stator, note that, if a current IF were in the stator it would make a magnetic field:

4 NaI
= − F kwna

Br µ0
π 2pg

then the correct turns ratio to refer rotor current to the stator is:

4Nakwna
I0 = IFNR
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So now the space fundamental component of electric field seen from the rotor is:
(

4Nakw1a 2 µ0NakwnaR
E1 = + jωr I

N π g

(

1 1
+

R (NR + p)2 (NR − p)2

))

F

Finally, to relate stator air-gap voltage to rotor electric field, we must do two things: first,
translate electric field according to relative frequencies between rotor and stator and integrate over
the length of the winding. The result is:

ω
V ag = −2ℓNakw1a E1ωr

The equivalent circuit elements for the rotor are then just:

8ℓN2

R2 = ak2
w1a RslotNR

8ℓN2 2
akw1a 4 µ0N

2 2
akw1aRℓ 1 1

X2 = ωL + ωslotN π g

(

+
(NR + p)2R (NR − p)2

)

Note that the slot resistance and reactance parameters may be frequency dependent and some
care must be taken to compute those parameters at the right frequency. Note also that the same
extension to space harmonics used for polyphase machines in the reference document will be useful
here. Note, however, that the triplen harmonics will, in general, be present and important in the
single phase machine, unlike three phase motors. Thus the magnetizing inductance, slot leakage
and rotor resistance for the higher order harmonic terms will be of the form:

4 µ0N
2
ak2

wanRℓ
Lagn =

π n2p2g

8ℓN2 2

= ak2
wna 4 µ0N

2

+ akwnaRℓ
X2,n ωL ωxlotNR π g

(

1 1
+

(NR + np)2 (NR − np)2

)

8ℓN2

R2,n = ak2
wna RslotNR

Note that rotor resistance must be corrected for end ring effects as described in the reference
document.

4 Winding Factor

In the single phase machines the windings can be described as ’concentric’, or as a collection of
some number of coils, all with the same axis, with different coil throws and perhaps a different
number of turns. If we denote Ns(k) as the number of turns in coil k and Nc(k) as the coil throw,
then the total number of turns is just the sum of all of the Ns’s and the electrical span angle for
coil k is

2pπNc(k)
φk =

S

where S is the total number of slots in the stator (this assumes the slots have equal spacing, which
may be a limitation here). The winding factor is then the weighted sum of the winding factors of
all of the coils:
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Na =
∑

Ns(k)
k

∑ Ns(k) nφk
kwna = sin

Na 2
k

5 Skew

Often, rotors are skewed, in which case the rotor and stator link different fluxes. The self inductance
will be what is computed in this note but the mutual inductances will be modified by the skew
factor. The difference beween self and mutual inductance must be treated as leakage inductance.

If the skew from one end of the rotor to the other is, in electrical degrees, θsk, the skew factor
for the nth harmonic can be shown to be:

sin(nθsk )
ksn = 2

(nθsk )2

The magnetizing and leakage inductance components are then:

Xφn = 2ωLagnksn

X1n = 2ωLagn(1 − ksn)

6 Operation: Fundamental only

Admitting that space harmonics may be important here, we outline operation considering the
space fundamental only. Space harmonics can be added conveniently once the basic operation is
understood.

The coordinate system shown in Figure 2 is used.

r

φφ

b

a
f

Figure 2: Rotating Field Coordinates

If we assume that the two stator phases are noted as a and b and two equivalent rotor phases
are A and B, flux linkages are:

λa = Laia + LφiA

λb = Lbib + αLφiB

λA = Lφia + LAiA

λB = αLφib + LAiB
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where we have assumed that the rotor equivalent winding has the same number of turns and winding
factor as the run winding of the stator.

Now this is not a convenient set to use because the interaction of the rotor makes the equivalent
phases A and B difficult to use. So we will formulate a coordinate transformation. Working in
complex amplitudes, we assume that the equivalent quantities in the rotor coordinates are the sum
of components rotating forward and backward:

[

IA 1
=

IB

]

2

[

1 1
j −j

] [

IF

IR

]

The inverse transformation is:
[

IF 1 −j I
= A

IR

] [

1 j

] [

IB

]

Then the complex amplitudes of flux linkages are:

Lφ Lφ
Λa = LaIa + IF + I

2 2 R

jαLφ jαLφ
Λb = LbIb + I

2 F − I
2 R

ΛF = LφIa − jαLφIb + LAIF

ΛR = L φIa + jαLφIb + LAIR

Voltage equations are, in the stator coordinate system:

jXφ jXφ
V a = (jXa + Ra)Ia + I

2 F + I
2 R

αXφ αXφ
V b = (jXb + Rb)Ib − IF + I

2 2 R

jXφ αXφ jXA R2
0 = Ia + I

2 2 b +

(

+ I
2 2

)

Fs

jXφ αXφ jXA R2
0 = Ia − I + +

2 2 b

(

2 2(2 − s)

)

IR

This set of four linear equations is readily solved for the four currents Ia, Ib, IF and IR. To
find mechanical energy converted, see that air-gap power and power dissipated on the rotor are,
(working in RMS):

Pag = | 2 R2 2 R2
IF | + |IR|

2s 2(2 − s)

2
Pd = | F |

2 R2 R
I + | 2IR|

2 2

Mechanical energy converted is the difference:

Pm = | 2 R2 R2
IF | (1 − s) − |IR|

2 (1 − s)
2s 2(2 − s)

and torque is
p p

Tm = Pm =

[

R2 R2
| 2IF | − |IR|

2

ω(1 − s) ω 2s 2(2 − s)

]
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7 Operation With Space Harmonics

The space harmonics couple together only in the stator winding which produces the space harmonic
fields in response to armature currents. They are independent of each other in the rotor, however.
The coupling is reflected in an addition of all of the harmonic components in the production of
voltage in the stator. Each rotating component (forward and backward at each harmonic order)
will have its own voltage balance equation. Considering only one of the harmonics, which we will
refer to as n, the voltage equations become:

jXφ jXφ jXφn jXφn
V A = (jXa + Ra)Ia + I I +

2 F +
2 R I

2 Fn + I
2 Rn

αXφ αXφ αnXφn αnXφn
V B = (jXb + Rb)Ib − IF + IR − I +

2 2 2 Fn I
2 Rn

jXφ αXφ jXA R2
0 = I I +

2 a + b +
2

(

2 2s

)

IF

jXφ αXφ
0 = I

2 a − I
2 b +

(

jXA R2
+ I

2 2(2 − s)

)

R

jXφn αnXφn jXAn R2,n
0 = I

2 a + I
2 b +

(

+
2 2sn+

)

IFn

jXφn αnXφn jXAn R2,n
0 = Ia − Ib +

2

(

+ I
2 2 2sn−

)

Rn

Harmonic slips are the ratio between rotor frequency and stator frequency and are:

sn+ = ns − (n − 1)

sn− = (n + 1) − ns

Torques from the space harmonics are estimated in the same way as for the fundamental: air-gap
and dissipated power are:

2
Pag = |I n|

2 R R2
F + | 2IRn|

2sn+ 2sn−

Pd = |IFn|
2 R2

+ | 2 R2
IRn|

2 2

Inserting the definition for harmonic order slip, we find torque due to the nth harmonic is:

np
Tmn =

(

| 2 R2 2 R2
IFn| − |IRn|

ω 2sn+ 2sn−

)

Adding harmonic terms is straightforward and though, if there are a lot of space harmonics
considered, it yields a relatively large coupling matrix, the resulting linear equation set is straight-
forward to solve.

Generally, in a single phase motor the auxiliary circuit is connected to an external impedance
(e.g. a capacitor or parallel combination of a capacitor and a resistor) and then to the same voltage
source as the main winding. The resulting set of expressions is then:
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jXφ jXφ jXφn jXφn
V = (jXa + Ra)Ia + IF + I I

2 R +
2 2 Fn + I

2 Rn

αXφ αXφ αnXφn αnXφn
V = (jXb + Rb + Ze)Ib − IF + I I +

2 R −
2 2 Fn I

2 Rn

jXφ αXφ
0 = I

2 a + I
2 b +

(

jXA R2
+

2 2s

)

IF

jXφ αXφ
(

jXA R2
0 = I

2 a − I
2 b + + I

2 2(2 − s)

)

R

jXφn αnXφn jXAn R2,n
0 = Ia + Ib +

(

+
2 2 2 2sn+

)

IFn

jXφn αnXφn 2,
0 = Ia − Ib +

(

jXAn R n
+ I

2 2 2 2sn−

)

Rn

where Ze is the value of the external impedance element.
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