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Appendix 1. Electron Wavepacket Propagation  

 

Stationary states and eigenfunctions 

 

Until now, we have not considered the velocity of electrons because we have not 

considered the time dependence of solutions to the Schrödinger equation. In Part 1, we 

broke the full Schrödinger Equation into two coupled equations: an equation in time, and 

another in space. The separation is possible when the potential energy is constant in time. 

Then the spatial and time dependencies of the solution can be separated, i.e. 

      ,x t x t    (A.1.1) 

The time dependence is described by: 

    
d

E t i t
dt

   (A.1.2) 

and the spatial dependence is given by 

        
2 2

22

d
E x x V x x

m dx
     . (A.1.3) 

Solutions to these coupled equations are characterized by a time-independent probability 

density. The general solution to Eq. (A.1.2) is  

    0 exp
E

t i t 
 

  
 

 (A.1.4) 

and the probability density is: 

          
2 2 2 2

, 0x t x t x       (A.1.5) 

Because the solution does not evolve with time, it is said to be „stationary‟. These 

solutions are important and are known as „eigenfunctions‟. Eigenfunctions are extremely 

important in quantum mechanics. You can think of them as the natural functions for a 

particular system. Each eigenfunction is associated with a constant, known as the 

eigenvalue: in this case the constant energy, E.  

 

An arbitrary wavefunction, however, will not necessarily be an eigenfunction or 

stationary.  For example, consider a wavefunction constructed from two eigenfunctions: 

      1 1 2 2x a x a x     (A.1.6) 

where a and b are constants. This is known as a linear combination of eigenfunctions.  

The full solution is 

      
1 2

1 1 2 2,
E E

i t i t

x t a x e a x e 
 

    (A.1.7) 

Substituting into the Schrödinger Equation gives 

        
1 2 1 2

1 1 2 2 1 1 1 2 2 2

E E E E
i t i t i t i t

H a x e a x e a E x e a E x e   
   

    (A.1.8) 

i.e., the linear combination is not necessarily itself an eigenfunction. It is not stationary: 

the phase of each eigenfunction component evolves at a different rate. The probability 
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density shows time dependent interference between each rotating phase term. For 

example, assuming that a1, a2, ψ1 and ψ2 are real: 

            
2 2 2 2 2

1 1 2 2 1 2 1 2 2 1, 2 cos
t

x t a x a x a a x x E E   
 

     
 

. (A.1.9) 

Completeness 

 

We will not prove completeness in the class. Instead we merely state that the 

completeness property of eigenfunctions allows us to express any well-behaved function 

in terms of a linear combination of eigenfunctions. i.e. if 
n  is an eigenfunction, then an 

arbitrary well-behaved wavefunction can be written 

 n n

n

a   (A.1.10) 

Completeness also requires that the potential be finite within the region of interest. For 

example, no combination of eigenfunctions of the infinite square well can ever describe a 

non-zero wavefunction amplitude at the walls.  

 

Re-expressing the wavefunction in terms of a weighted sum of eigenfunctions is a little 

like doing a Fourier transform, except that instead of re-expressing the wavefunction in 

terms of a linear combination of exp[ikx] factors, we are using the eigenfunctions.
†
 

 

The problem now is the determination of the weighting constants, an. 

 

For this we need the next property of eigenfunctions: 

 

Orthogonality 

 

Eigenfunctions with different eigenvalues are orthogonal. i.e. the bracket of 

eigenfunctions corresponding to different eigenvalues is zero: 

 0, ,j i i jfor i j E E      (A.1.11) 

If different eigenfunctions have identical eigenvalues (i.e. same energy) they are known 

as degenerate. 

 

Calculation of coefficients 

 

Starting from Eq. (A.1.10) we have 

 n n

n

a   (A.1.12) 

Now, let‟s take the bracket with an eigenfunction 
k  

 k k n n n k n

n n

a a         (A.1.13) 

From the statement of orthogonality in Eq. (A.1.11) we have 

                                                 
†
 Note that exp[ikx] provides a continuous set of eigenfunctions for unbound states, i.e., the expansion in 

terms of eigenfunctions is the Fourier transform.  
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k n nk    (A.1.14) 

where nk is the Kronecker delta function, i.e. nk = 1 only when n = k. 

 

Thus, 

 
k ka   . (A.1.15) 

These coefficients are very important.  

 

Since the eigenfunctions are usually known, often the set of coefficients provides the 

interesting information in a particular problem. This may be clear from an example. 

 

An example: the expanding square well 

 

Consider an electron occupying the ground state of an infinite square well of length L. As 

shown in Fig. A 1.1, at time t = 0, the well suddenly triples in size. What happens to the 

electron? 

 

 

 

 
Fig. A 1.1. An electron is 
in the ground state of an 
infinite potential well. 
Suddenly the infinite well 
expands instantaneously 
to three times its previous 
size. 

 

 

 

 

 

 

 

Let‟s begin to answer this question by considering the wavefunction prior to the 

expansion of the well:
†
 

    
2

sin , 0x x L x L
L

     (A.1.16) 

If we substitute this back into the Schrödinger Equation we can easily confirm that the 

effect of operating on this wavefunction with the Hamiltonian is the same as multiplying 

the wavefunction by a constant. i.e. 

    
2 2

sin sinH x L E x L
L L

   (A.1.17) 

                                                 
†
 Note that relative the previous square well analysis (see Fig. 1.21) we have shifted the x-axis here such 

that the left wall is at x = 0. 
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Thus, this wavefunction is an eigenfunction of the original square well, and the constant, 

E, the energy, is the eigenvalue corresponding to the eigenfunction. 

  

Now, Eq. (A.1.16) is the lowest energy eigenfunction for the time independent infinite 

square well potential. The wavefunction evolves in time according to 

    
d

E t i t
dt

   (A.1.18) 

Solving Eq. (A.1.2) gives: 

        
2

, sin exp
E

x t x t x L i t
L

  
 

    
 

 (A.1.19) 

where 

 
2 2

22
LE E

mL


  . (A.1.20) 

The probability density, however, is time independent: 

    
2 22

, sin , 0x t x L x L
L

     (A.1.21) 

We have verified that the eigenfunction is stationary, as it must be. 

 

Now, when the well expands, the wavefunction cannot change instantaneously. To 

confirm this, consider a step change in the wavefunction in Eq. (A.1.2) – the energy 

would tend to ∞. 

 

But the stationary states of the new well are 

    
2

sin 3 , 0 3
3

x n x L x L
L

     (A.1.22) 

i.e. the wavefunction of the electron at t = 0 is not a stationary state in the expanded well. 

To determine the evolution of the electron wavefunction in time, we must re-express the 

wavefunction in terms of the eigenfunctions of the expanded well. We can then calculate 

the evolution of each eigenfunction from Eq. (A.1.2).  

 

The wavefunction is now described as a linear combination of eigenfunctions: 

 

   

 

2
sin , 0

2
sin 3 , 0 3

3
n

n

x x L x L
L

a n x L x L
L

 



  

  

 (A.1.23) 

where an is a set of constants, that weight the contributions from each eigenfunction.  

 

We express the wavefunction as a linear combination of the eigenfunctions of the 

expanded well. From Eq. (A.1.15) we have 

    
2

sin 3 , 0 3
3

n

n

x a n x L x L
L

     (A.1.24) 

Thus, the coefficients are 
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    
0

2 2
sin sin 3

3

L

n na x L n x L dx
L L

       (A.1.25) 

Solving gives 

 
 
2

1
3

3

sin 36 3
3

9

n

n

a
n

n
n









 
 
 

 (A.1.26) 

 

In Fig. A 1.2 we plot the cumulative effect of adding the weighted eigenfunctions. After 

about 10 eigenfunctions, the linear combination is a close approximation to the initial 

wavefunction. 

Fig. A 1.2. Here we show various approximations for the initial wavefunction. We need 
about 10 weighted eigenfunctions for a close match. The agreement gets better with 
addition eigenfunctions. 
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Next, we calculate the evolution of the wavefunction. From Eq. (A.1.24), we get 

    
2

, sin 3 exp , 0 3
3

n
n

n

E
x t a n x L i t x L

L


 
     

 
  (A.1.27) 

where 

 
 

2 2 2

2
2 3

n

n
E

m L


  (A.1.28) 

The evolution of the wavefunction with time is shown in Fig. A 1.3, below. 

Fig. A 1.3. The evolution of the wavefunction after the expansion of the walls at t = 0. 
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Propagation of a Gaussian Wavepacket 

 

Next we will examine the propagation of a Gaussian wavepacket in free space. Again, we 

will expand the wavefunction in terms of its eigenfunctions.  

 

Consider an electron in free space. Let the initial wavepacket be a Gaussian. 

      
2

1 4
2

02
,0 exp exp

2

x
x L ik x

L
 

  
  

 
 (A.1.29) 

Note that we have introduced a phase factor exp[ik0x]. Recall that multiplying the real 

space wavefunction by the phase factor exp[ik0x], is equivalent to shifting the k-space 

wavefunction by k0. Since the Fourier transform was centered at k = 0 prior to the shift, 

the phase factor shifts the expectation value of k to k0. Hence the factor exp[ik0x] gives 

the wavepacket has a non-zero average momentum. 

 

Now, the eigenfunctions of the Schrödinger Equation in free space are the complex 

exponentials 

    expk ikx   (A.1.30) 

where k is continuous. 

 

Each eigenfunction evolves with time as 

    , exp exp
E

k t ikx i t
 

  
 

 (A.1.31) 

Expanding the wavefunction as a linear combination of these eigenfunctions we have 

      
1

, ,
2

x t A k k t dk 






   (A.1.32) 

      
1

, exp exp
2

E
x t A k ikx i t dk







 
  

 
  (A.1.33) 

where A(k)/2 describes the weighting of each complex exponential eigenfunction.  

 

Since    expk ikx  , Eq. (A.1.32) evaluated at t = 0 is simply the inverse Fourier 

transform: 

      
1

exp
2

x A k ikx dk






   (A.1.34) 

Thus, A(k) is determined from the Fourier transform of the wavefunction 

          
 

22
1 4

02,0 ,0 4 exp
2

ikx
L k k

A k k x x e dx L   






 
    

  
 (A.1.35) 

Now, before we can substitute A(k) back into Eq. (A.1.32) to get the time evolution of 

ψ(x,t) we need to consider the possible k dependence of energy, E.  

 

In general the relation between E and k is known as the dispersion relation.  
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E
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The dispersion relation is important because propagation of an electron in free space, or 

in a particular material is determined by the dispersion relation. Let‟s consider some 

examples. 

 

(i) Linear dispersion relation 

 

The dispersion relation determines how the wavepacket spreads in time. For example, if 

instead of an electron we were considering a photon with E ck  , the dispersion 

relation is linear and the photon does not spread as it propagates.  

 

 
 

Fig. A 1.4. A linear dispersion relation. 

 

 

 

 

 

 

The time dependent factor is 

    exp exp exp
E

i t i t ickt
 
     
 

 (A.1.36) 

Solving Eq. (A.1.32) gives 

  
 

 
 

2

01 4 22

1
, exp exp

2

x ct
x t ik x ct

LL




 
      

  

. (A.1.37) 

Thus, the probability density is simply the original function shifted linearly in time: 

  
 

 
2

2

1 2 22

1
, exp

x ct
x t

LL




 
  

  

 (A.1.38) 

 

(ii) Quadratic dispersion relation 

 

For plane wave eigenfunctions, however, the dispersion relation is quadratic and we have 

 
2 2

2

k
E

m
  (1.39) 

 
 
 
Fig. A 1.5. A quadratic dispersion relation. 
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As we have seen, particles in a box also have quadratic dispersion relations. 

 

Thus the time dependent factor is 

  
2

exp exp exp
2

E k
i t i t i t

m


  
      
   

 (A.1.40) 

Solving Eq. (A.1.32) gives 

  
 

 

 

22
00

01 4 2 222

1 1
, exp exp

2 2 11

x k t mk t
x t i k x

m L i t mLi t mLL




    
     

      

(A.1.41) 

 

and 

       

 

2
1 2

2 2 0

2
, 2 exp

2

x k t m
x t x t

x t
 

  
  D   
 D   

 (A.1.42) 

where 

  
22

2

2
1

2

L t
x t

mL

  
D           

 (A.1.43) 
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Fig. A 1.6. The evolution of a Gaussian wavepacket for linear and quadratic dispersion 
relations. 

 

Group Velocity 

 

As with a classical wave, the average velocity of the wavepacket is the group velocity, 

defined as the time derivative of the expectation value of position: 

 
1

g

d dE d
v x

dt dk dk


    (A.1.44) 

If the wavepacket is highly peaked in k-space it is possible to simplify Eq. (A.1.44) by 

evaluating d/dk at the expectation value of k: 

 g

k

d d
v

dk dk

 
   (A.1.45) 

For the linear dispersion relation, d/dk is constant so we don‟t need the approximation: 

 
g

d
v c

dk


   (A.1.46) 

i.e. the photon moves along at the speed of light, as expected. 

 

For the quadratic dispersion relation, we have 

 0
g

kd k
v

dk m m


    (A.1.47) 

Since 0k  is the expectation value of momentum, this is indeed the average velocity. 
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Problems 

 

1. Consider the electron in the expanded well discussed in the notes.  Numerically 

simulate the wave function as a function of time.  Using the simulation or otherwise, 

determine the expectation value of energy before and after the well expands? Predict the 

behavior of the expectation values of position and momentum as a function of time. 

Fig. A 1.7. The expanding well. 

 

2. Consider the wave function in an infinite square well of width L illustrated below at 

time t = 0.  How will the wavefunction evolve for t > 0.  Will the wave function ever 

return to its original position?  If so, at what time t = T will this occur? 

Fig. A 1.8. An initial state within a quantum well. 
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3. Derive the expression for the propagation of a Gaussian wavepacket with the linear 

dispersion relation E ck  .  (Equation (A.1.37))   
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Appendix 2. The hydrogen atom 

 

The box model of the hydrogen atom 

 

Hydrogen is the simplest element. There are just two components: an electron, and a 

positively charged nucleus comprised of a single proton. 

 

Perhaps the simplest model of the hydrogen atom employs our now familiar square 

potential wells. This approximation cannot be taken very far, but it does illustrate the 

origin of the shapes of some of the orbitals. 

 

If we compare the smooth, spherically symmetric Coulomb potential to our box model of 

an atom, it is clear that the box approximation will give up a lot of accuracy in the 

calculation of atomic orbitals and energy. The box, however, does yield insights into the 

shape of the various possible atomic orbitals. 

 

The box is a separable potential. Thus, the atomic orbitals can be described by a product: 

        , , x y zx y z x y z     (A.2.1) 

If the wall have infinite potential, the possible energies of the electron are given by 

 

22 22 2

, , 2 2 22x y z

yx z
n n n

x y z

nn n
E

m L L L

  
    

 

 (A.2.2) 

where the dimensions of the box are Lx × Ly × Lz and nx, ny and nz are integers that 

correspond to the state of the electron within the box. 

  

For example, consider the ground state of a box with infinite potential walls. 

(nx,ny,nz) = (1,1,1) 

 

 

 

 

 
Fig. A 2.1. The ground state of a 
3 dimensional box.  
(nx,ny,nz) = (1,1,1) 
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Now, consider the orbital‟s shape if either ψx(x) or ψy(y) or ψz(z) is in the first excited 

state: (nx,ny,nz) = (2,1,1), (nx,ny,nz) = (1,2,1) or (nx,ny,nz) = (1,1,2) 

 

The 1s orbital is similar to (nx,ny,nz) = (1,1,1). The p orbitals are similar to the first 

excited state of the box, i.e. (nx,ny,nz) = (2,1,1) is similar to a px orbital, (nx,ny,nz) = (1,2,1) 

is similar to a py orbital and (nx,ny,nz) = (1,1,2) is similar to a pz orbital. 

Fig. A 2.2. The first excited states of a 3 dimensional box. (a) (nx,ny,nz) = (2,1,1), (b) 
(nx,ny,nz) = (1,2,1), (c) (nx,ny,nz) = (1,1,2). 

 

The approximation soon breaks down, however. The 2s orbital, which has the same 

energy as the 2p orbitals is most similar to the box orbital (nx,ny,nz) = (3,3,3), which has 

significantly higher energy. Nevertheless, the box does illustrate the alignment of the 

three p orbitals with the x, y and z axes. 
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Appendix 3. The Born-Oppenheimer approximation
†
 

 

Consider the hydrogen atom Hamiltonian. Let the electron coordinate be x, and the 

nuclear coordinate be X. We will assume that the system is one dimensional for the 

purposes of explaining the approximation. 

 

2 2 2 2 2

2 2

0

ˆ
2 2 4e N

d d e
H

m dx m dX x X
   


 (A.3.1) 

Now let‟s separate the solution, ψ, into an electron-only factor , and the nuclear-

dependent factor : 

      , ,x X x X X   . (A.3.2) 

Substituting into Eq. (A.3.1) gives: 

  
2 2 2 2 2

2 2 2
2 ,

2 2e N

d d d d d
H V x X

m dx m dX dX dX dX

    
    

 
      

 
 (A.3.3) 

where we have replaced the Coulomb potential by V. 

 

Now using the Born-Oppenheimer approximation, i.e. me << mN, we approximate Eq. 

(A.3.3) by: 

  
2 2

2
,

2 e

d
H V x X

m dx


     . (A.3.4) 

Next, canceling the nuclear-dependent factor  : 

  
2 2

2
,

2 e

d
H V x X

m dx


    . (A.3.5) 

This equation is used to solve for the electron coordinates in a given nuclear 

configuration. The nuclear configuration is then optimized. 

                                                 
†
 This Appendix is adapted in part from Molecular Quantum Mechanics by Atkins and Friedman 
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Appendix 4. Hybrid Orbitals 

 

Linear alignment with two neighbors (sp hybridization) 

 

Consider three atoms in a line, as shown in Fig. A 4.1. Arbitrarily we align the atoms 

with the x-axis. 

Fig. A 4.1. Three atoms in a line. 

 

We wish to determine the contribution of the central atom‟s orbitals to  bonds. Recall 

that bonds have electron density on the axis between the atoms.  

 

Now, if the basis set consists of s and p orbitals, only s and px orbitals can contribute to  

bonds on the x-axis. py and pz orbitals have zero density on the x-axis and therefore 

cannot contribute to the  bonds. They may contribute to  bonds however. 

 

Let‟s define the symmetry adapted atomic orbitals that contribute to  bonds generally 

as: 

 
z zs s p pc c     (A.4.1) 

where cs and cpx are the weighting coefficients for the s and px orbitals respectively. 

There are two  bonds: one to the left, and one to the right. We‟ll define the two 

symmetry adapted atomic orbitals that contribute to these  bonds as ζ
1
 and ζ

2
 

respectively.  

 

The s orbital contributes equally to both symmetry adapted atomic orbitals. i.e. 

 
2 1 1

,
2 2

s sc c   (A.4.2) 

Since the px orbital is aligned with the x-axis, we can weight the px orbital components by 

the coordinates of the two neighboring atoms at x = +1 and x = -1, 

x

z

y
 1,0,0

 1,0,0
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x

z

y

 

x

z

 

 

1

2

x

x

s s p p

s s p p

c c

c c





  

  

 

 
 (A.4.3) 

In the first orbital, we are adding the s and px orbitals in-phase. Consequently, we have 

maximum electron density in the positive x-direction. In the second, we are adding the s 

and px orbitals out of phase, yielding a maximum electron density in the negative x-

direction.  

 

Normalizing each orbital gives 

 
2 1 1

,
2 2

p pc c   (A.4.4) 

Thus, the first symmetry adapted atomic orbital is 

  1 1

2 xs p     (A.4.5) 

 
 
 
Fig. A 4.2. The sp hybrid-ized 
atomic orbital in the +x 
direction. 

 

 

 

 

 

 

 

Similarly, the second symmetry adapted atomic orbital is 

  2 1

2 xs p    . (A.4.6) 

 
 
 
Fig. A 4.3. The sp hybrid-
ized atomic orbital in the –x 
direction. 

 

 

 

 

 

 

 

Thus, based purely on symmetry arguments, in a linear chain of atoms it is convenient to 

re-express the four atomic orbitals s, px, py and pz, as  

  1

2 xs p    , (A.4.7) 
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z

x
y

 1,0,0

 31
2 2
, ,0 

 31
2 2
, ,0 

 

x

z

 

where py and pz remain unaffected. This is known as sp hybridization since we have 

combined one s atomic orbital, and one p atomic orbital to create two atomic orbitals that 

contribute to  bonds. 

 
 
 
 
Fig. A 4.4. We plot both sp hybridized 
atomic orbitals. They point along the x-
axis. 

 

 

 

 

 

 

The remaining py and pz atomic orbitals may combine in molecular orbitals with higher 

energy. The highest occupied molecular orbital (HOMO) is also known as the frontier 

molecular orbital. In an sp-hybridized material, the frontier molecular orbital will be a 

linear combination of py and pz atomic orbitals. The frontier molecular orbital is relevant 

to us, because it more likely than deeper levels to be partially filled. Consequently, 

conduction is more likely to occur through the HOMO than deeper orbitals. 

 

Now,  bonds possess electron densities localized between atoms. But  bonds composed 

of linear combinations of p orbitals can be delocalized along a chain or sheet of atoms. 

Thus, if the HOMO is a  bond, it is much easier to push an electron through it; we‟ll see 

some examples of this in the next section. 

 

Planar alignment with three neighbors (sp
2
 hybridization) 

 

Consider a central atom with three equispaced neighbors at the points of a triangle; as 

shown in Fig. A 4.5. Arbitrarily we align the atoms on the x-y plane. 
 
 
 
 
Fig. A 4.5. A 
central atom and 
its neighbors. 
Electrostatic repul-
sion can force the 
neighbors to the 
points of an 
equilateral tri-
angle. 
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Once again, we wish to determine the contribution of the central atom‟s orbitals to  

bonds. If the basis set consists of s and p orbitals, only s, px and py atomic orbitals can 

contribute to  bonds in the x-y plane. pz orbitals can only contribute to  bonds. 

 

Let‟s define the symmetry adapted atomic orbitals that contribute individually to  bonds 

generally as: 

 
x x y ys s p p p pc c c       (A.4.8) 

The s orbital contributes equally to all three symmetry adapted atomic orbitals. i.e. 

 
2 1 1

,
3 3

s sc c   (A.4.9) 

Since the px orbital is aligned with the x-axis, and py with the y-axis, we can weight the p 

orbital components by the coordinates of the triangle of neighboring atoms 

 

 

 

 

1

2 31
2 2

3 31
2 2

1 0
x y

x y

x y

s s p p p

s s p p p

s s p p p

c c

c c

c c







   

   

   

   

   

   

 (A.4.10) 

 

Normalizing each orbital gives 

 
2 2 2

,
3 3

p pc c   (A.4.11) 

Thus, 

 

1

2

3

1 2
0.

33

1 1 1

3 6 2

1 1 1

3 6 2

x y

x y

x y

s p p

s p p

s p p







   

   

   

  

  

  

 (A.4.12) 

 

This is known as sp
2
 hybridization since we have combined one s atomic orbital, and two 

p atomic orbitals to create three atomic orbitals that contribute individually to  bonds. 

The bond angle is 120º. 
 
 
 
Fig. A 4.6. sp2 hybridized molecular orbitals 
point to the vertices of a triangle. 
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The remaining pz atomic orbitals will contribute to the frontier molecular orbitals of an 

sp
2
 hybridized material; see for example ethene in Fig. A 4.7. 

 

Fig. A 4.7. Ethene contains two sp2 hybridized carbon atoms. The unhybridized pz 

orbitals of carbon form  bonds. 

 

As in the sp hybridized case, electrons in these  molecular orbitals may be delocalized. 

If electrons are delocalized over several neighboring atoms, then the molecule is said to 

be conjugated. Another sp
2
 hybridized material was shown in Fig. 6.2. This is 1,3-

butadiene, a chain of 4 × sp
2
 hybridized carbon atoms. Note the extensive electron 

delocalization in the  bonds. 

 

Some archetypal conjugated carbon-based molecules are shown in Fig. A 4.8. In each 

material the carbon atoms are sp
2
 hybridized (surrounded by three neighbors at points of 

an equilateral triangle). Note that another typical characteristic of sp
2
 hybridized 

materials is alternating single and double bonds. 

 

 

 

 

sp2 hybridized orbitals

pz orbital

 bond

C
C

H

H

H

H

H

H

H

C

C

z

x
y
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z

x

y

(+1,+1,+1)

(-1,-1,+1)

(-1,+1,-1)
(+1,-1,-1)

 

Fig. A 4.8. Examples of conjugated materials frequently employed in electronic devices. 
Note that the spacing between the HOMO and LUMO energy levels of electrons 
decrease as the molecules get bigger, consistent with particle in a box predictions of 
energy level spacing. Adapted from „Electronic Processes in Organic Crystals‟ by Pope 
and Swenberg, First Edition, Oxford University Press, 1982. 

 

 

Tetrahedral alignment with four neighbors (sp
3
 hybridization) 

 

Consider a central atom with four equispaced neighbors. Repulsion between these atoms 

will push them to the points of a tetrahedron; see Fig. A 4.9.  
 
 
 
Fig. A 4.9. Electro-static 
repulsion forces four atoms 
surround-ing a central atom to 
the points of a tetrahedron. 

 

 

 

 

 

 

 

 

Now, all atomic orbitals will contribute to  bonds. There are no  bonds. 

acenes

benzene

naphthalene

anthracene

tetracene

pentacene

4.9 eV

3.9 eV

3.3 eV

2.6 eV

2.1 eV

Approx. HOMO-LUMO gap

n
polyacetylene
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Let‟s define the symmetry adapted atomic orbitals that contribute individually to  bonds 

generally as: 

 
x x y y z zs s p p p p p pc c c c         (A.4.13) 

Once again, the s orbital contributes equally to all four symmetry adapted atomic orbitals. 

i.e. 

 
2 1 1

,
4 2

s sc c   (A.4.14) 

Since the px orbital is aligned with the x-axis, py with the y-axis and pz with the z-axis, we 

can weight the p orbital components by the coordinates of the triangle of neighboring 

atoms 

 

 

 

 

 

1

2

3

4

1 1 1

1 1 1

1 1 1

1 1 1

x y z

x y z

x y z

x y z

s s p p p p

s s p p p p

s s p p p p

s s p p p p

c c

c c

c c

c c









    

    

    

    

    

    

    

    

 (A.4.15) 

 

Normalizing each orbital gives 

 
2 1 1

,
4 2

p pc c   (A.4.16) 

Thus, 

 

 

 

 

 

1 1
2

2 1
2

3 1
2

4 1
2

x y z

x y z

x y z

x y z

s p p p

s p p p

s p p p

s p p p









    

    

    

    

   

   

   

   

 (A.4.17) 

This is known as sp
3
 hybridization since we have combined one s atomic orbital, and 

three p atomic orbitals to create four possible atomic orbitals that contribute individually 

to  bonds. The bond angle is 109.5º. 

 

 

 

 

 
Fig. A 4.10. sp3 hybridized orbitals 
point to the vertices of a tetraheron. 
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