6.730 Physics for Solid State Applications

Lecture 17: Nearly Free Electron Bands (Part Ill)
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e Free Electron Bands

e Nearly Free Electron Bands

e Approximate Solution of Nearly Free Electron Bands
e Bloch’s Theorem

e Properties of Bloch Functions



Free Electron Dispersion Relation
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Nearly Free Electron Dispersion Relation
R2k?

For weak lattice potentials, E vs k is still approximately correct... E = >
m

Dispersion relation must be periodic.... E(k) = E(k + K;)
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Nearly Free Electron Dispersion Relation

Dispersion relation must be periodic.... E(k) = E(k 4+ K;)

Expect all solutions to be represented within the Brillouin Zone (reduced zone)
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Nearly Free Electron Dispersion Relation

Dispersion relation must be periodic.... E(k) = E(k + K;)
Expect all solutions to be represented within the Brillouin Zone (reduced zone)
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Nearly Free Electron Dispersion Relation

Dispersion relation must be periodic.... E(k) = E(k + K;)
Expect all solutions to be represented within the Brillouin Zone (reduced zone)
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Nearly Free Electron Dispersion Relation
Extension to 3-D requires, translation by reciprocal lattice vectors

in all directions... E(k) = E(k + K;)
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Nearly Free Electron Dispersion Relation
Extension to 3-D requires, translation by reciprocal lattice vectors
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Finite Basis Set Expansion with Plane Waves
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Fourier series expansion of Bloch function
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Basis functions in expansion are...
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Finite Basis Set Expansion with Plane Waves
Hamiltonian Matrix
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Fourier Series coefficients for the lattice potential...
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Infinite Basis Set Expansion with Plane Waves
Hamiltonian Matrix
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LCAO and Nearly Free Electron Bandstructure
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Why Is Lattice Potential Important Near Crossing Points ?

Let’s consider lattice potential to be a perturbation on free electrons....
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Periodic Perturbation of Free Electron Bands

1. h2 k2
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Energy up to second-order in perturbation expansion....
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Matrix elements for periodic potential...
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Periodic Perturbation of Free Electron Bands

VK|
EO(k) — EO(k 4+ Ky)

E@) (k) = EO(k)+VI[o]+ Y
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If the potential is sufficiently weak, this is a small perturbation on the
free electron bands, unless E°(k) = E°(k 4+ K,)

Since these are free electron energies, we can relate this easily to

the wave vectors...
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Periodic Perturbation of Free Electron Bands

If only two bands cross...
E%k) = E%(k + G)
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Periodic Perturbation of Free Electron Bands
Solutions
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Eigen-values...
E*(k) = EO(k) + V[0] + V[G]

Eigen-vectors...
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Periodic Perturbation of Free Electron Bands
Solutions
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Plots are for a potential of the form... V(z) ~ — COS(;)



Bloch’s Theorem

‘When I started to think about it, I felt that the
main problem was to explain how the electrons
could sneak by all the ions in a metal....

By straight Fourier analysis I found to my delight
that the wave differed from the plane wave of free

electrons only by a periodic modulation’
F. BLOCH

For wavefunctions that are eigenenergy states in a periodic potential...

() = X Ty (1)

or

e (r + R) = By (R)



Proof of Bloch's Theorem

Step 1: Translation operator commutes with Hamiltonain...
so they share the same eigenstates.

Try(r) =y(r+R)
Translation and periodic Hamiltonian commute...
TrH(1)$(r) = Hr+R)$(r+R) = H(r)¢(r+R) = H(r) Try(r)

Therefore, Hy(r) = Ey(r)
Try(r) = c(R)y(r)

Step 2: Translations along different vectors add...
so the eigenvalues of translation operator are exponentials

, c¢(R+R) =c(R)c(R)
TRTrY(r) = c(R)TRrp(r) = c(R)c(R)(r) .
h c(R) = 'R

TR1R/ r) =T / r) = R R’ r .
RIR/Y(r) R+R/Y(T) = c(R+ R)Y(r) (e 4 R) = Ry (R)



Normalization of Bloch Functions

Conventional (A&M) choice of Bloch amplitude...

re(r) = e® Ty (r)

6.730 choice of Bloch amplitude...

Normalization of Bloch amplitude...
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Momentum and Crystal Momentum
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Physical momentum is not equal to crystal momentum

So how do we figure out the velocity and trajectory in real space of electrons ?



